
Mark P Brynildsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/338731/publications.pdf Version: 2024-02-01

MADE D ROVNILDSEN

#	Article	IF	CITATIONS
1	Fluoroquinolone Persistence in Escherichia coli Requires DNA Repair despite Differing between Starving Populations. Microorganisms, 2022, 10, 286.	3.6	1
2	Translational Fusion to Hmp Improves Heterologous Protein Expression. Microorganisms, 2022, 10, 358.	3.6	1
3	Metabolites Potentiate Nitrofurans in Nongrowing Escherichia coli. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	8
4	Pseudomonas aeruginosa prioritizes detoxification of hydrogen peroxide over nitric oxide. BMC Research Notes, 2021, 14, 120.	1.4	1
5	Ploidy is an important determinant of fluoroquinolone persister survival. Current Biology, 2021, 31, 2039-2050.e7.	3.9	23
6	Phagosome–Bacteria Interactions from the Bottom Up. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 309-331.	6.8	13
7	Rifamycin antibiotics and the mechanisms of their failure. Journal of Antibiotics, 2021, 74, 786-798.	2.0	25
8	Toxin Induction or Inhibition of Transcription or Translation Posttreatment Increases Persistence to Fluoroquinolones. MBio, 2021, 12, e0198321.	4.1	8
9	Counting Chromosomes in Individual Bacteria to Quantify Their Impacts on Persistence. Methods in Molecular Biology, 2021, 2357, 125-146.	0.9	0
10	Robustness of nitric oxide detoxification to nitrogen starvation in Escherichia coli requires RelA. Free Radical Biology and Medicine, 2021, 176, 286-297.	2.9	5
11	Synergy Screening Identifies a Compound That Selectively Enhances the Antibacterial Activity of Nitric Oxide. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1001.	4.1	7
12	Quantitative Modeling Extends the Antibacterial Activity of Nitric Oxide. Frontiers in Physiology, 2020, 11, 330.	2.8	8
13	Quantifying Nitric Oxide Flux Distributions. Methods in Molecular Biology, 2020, 2088, 161-188.	0.9	3
14	Transcriptional Regulation Contributes to Prioritized Detoxification of Hydrogen Peroxide over Nitric Oxide. Journal of Bacteriology, 2019, 201, .	2.2	16
15	Stationary phase persister formation in Escherichia coli can be suppressed by piperacillin and PBP3 inhibition. BMC Microbiology, 2019, 19, 140.	3.3	13
16	Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nature Communications, 2019, 10, 1177.	12.8	124
17	Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019, 17, 441-448.	28.6	748
18	Checks and Balances with Use of the Keio Collection for Phenotype Testing. Methods in Molecular Biology, 2019, 1927, 125-138.	0.9	4

MARK P BRYNILDSEN

#	Article	IF	CITATIONS
19	Loss of DksA leads to multi-faceted impairment of nitric oxide detoxification by Escherichia coli. Free Radical Biology and Medicine, 2019, 130, 288-296.	2.9	32
20	Nutrient Depletion and Bacterial Persistence. , 2019, , 99-132.		3
21	Nitric Oxide Stress as a Metabolic Flux. Advances in Microbial Physiology, 2018, 73, 63-76.	2.4	0
22	Timing of DNA damage responses impacts persistence to fluoroquinolones. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6301-E6309.	7.1	77
23	An Orphan Riboswitch Unveils Guanidine Regulation in Bacteria. Molecular Cell, 2017, 65, 205-206.	9.7	2
24	Biased inheritance protects older bacteria from harm. Science, 2017, 356, 247-248.	12.6	3
25	An integrated network analysis identifies how ArcAB enables metabolic oscillations in the nitric oxide detoxification network of Escherichia coli. Biotechnology Journal, 2017, 12, 1600570.	3.5	6
26	An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa. Metabolic Engineering, 2017, 41, 67-81.	7.0	15
27	Tackling host–circuit give and take. Nature Microbiology, 2017, 2, 1584-1585.	13.3	1
28	Construction and Experimental Validation of a Quantitative Kinetic Model of Nitric Oxide Stress in Enterohemorrhagic Escherichia coli O157:H7. Bioengineering, 2016, 3, 9.	3.5	28
29	Development of Persister-FACSeq: a method to massively parallelize quantification of persister physiology and its heterogeneity. Scientific Reports, 2016, 6, 25100.	3.3	47
30	Starved Escherichia coli preserve reducing power under nitric oxide stress. Biochemical and Biophysical Research Communications, 2016, 476, 29-34.	2.1	7
31	A biochemical engineering view of the quest for immune-potentiating anti-infectives. Current Opinion in Chemical Engineering, 2016, 14, 82-92.	7.8	21
32	Quantifying Current Events Identifies a Novel Endurance Regulator. Trends in Microbiology, 2016, 24, 324-326.	7.7	0
33	Persister formation in Escherichia coli can be inhibited by treatment with nitric oxide. Free Radical Biology and Medicine, 2016, 93, 145-154.	2.9	34
34	Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1757-66.	7.1	33
35	Analyzing Persister Physiology with Fluorescence-Activated Cell Sorting. Methods in Molecular Biology, 2016, 1333, 83-100.	0.9	13
36	Non-Monotonic Survival of Staphylococcus aureus with Respect to Ciprofloxacin Concentration Arises from Prophage-Dependent Killing of Persisters. Pharmaceuticals, 2015, 8, 778-792.	3.8	8

MARK P BRYNILDSEN

#	Article	IF	CITATIONS
37	Aminoglycosideâ€Enabled Elucidation of Bacterial Persister Metabolism. Current Protocols in Microbiology, 2015, 36, 17.9.1-17.9.14.	6.5	10
38	Impacts of Global Transcriptional Regulators on Persister Metabolism. Antimicrobial Agents and Chemotherapy, 2015, 59, 2713-2719.	3.2	37
39	An ensemble-guided approach identifies ClpP as a major regulator of transcript levels in nitric oxide-stressed Escherichia coli. Metabolic Engineering, 2015, 31, 22-34.	7.0	30
40	Futile cycling increases sensitivity toward oxidative stress in Escherichia coli. Metabolic Engineering, 2015, 29, 26-35.	7.0	56
41	Persister Heterogeneity Arising from a Single Metabolic Stress. Current Biology, 2015, 25, 2090-2098.	3.9	124
42	Inhibition of stationary phase respiration impairs persister formation in E. coli. Nature Communications, 2015, 6, 7983.	12.8	110
43	Stationary-Phase Persisters to Ofloxacin Sustain DNA Damage and Require Repair Systems Only during Recovery. MBio, 2015, 6, e00731-15.	4.1	100
44	RNA Futile Cycling in Model Persisters Derived from MazF Accumulation. MBio, 2015, 6, e01588-15.	4.1	48
45	A Kinetic Platform to Determine the Fate of Hydrogen Peroxide in Escherichia coli. PLoS Computational Biology, 2015, 11, e1004562.	3.2	37
46	Model-driven identification of dosing regimens that maximize the antimicrobial activity of nitric oxide. Metabolic Engineering Communications, 2014, 1, 12-18.	3.6	23
47	Deciphering nitric oxide stress in bacteria with quantitative modeling. Current Opinion in Microbiology, 2014, 19, 16-24.	5.1	56
48	Nutrient Transitions Are a Source of Persisters in Escherichia coli Biofilms. PLoS ONE, 2014, 9, e93110.	2.5	93
49	The role of metabolism in bacterial persistence. Frontiers in Microbiology, 2014, 5, 70.	3.5	193
50	Dormancy Is Not Necessary or Sufficient for Bacterial Persistence. Antimicrobial Agents and Chemotherapy, 2013, 57, 3230-3239.	3.2	219
51	Establishment of a Method To Rapidly Assay Bacterial Persister Metabolism. Antimicrobial Agents and Chemotherapy, 2013, 57, 4398-4409.	3.2	110
52	Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nature Biotechnology, 2013, 31, 160-165.	17.5	375
53	Metabolic Control of Persister Formation in Escherichia coli. Molecular Cell, 2013, 50, 475-487.	9.7	353
54	A Kinetic Platform to Determine the Fate of Nitric Oxide in Escherichia coli. PLoS Computational Biology, 2013, 9, e1003049.	3.2	65

#	Article	IF	CITATIONS
55	Heterogeneous bacterial persisters and engineering approaches to eliminate them. Current Opinion in Microbiology, 2011, 14, 593-598.	5.1	175
56	Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 2011, 473, 216-220.	27.8	787
57	Systems Biology Makes It Personal. Molecular Cell, 2009, 34, 137-138.	9.7	9