Hui-Tian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3386937/publications.pdf

Version: 2024-02-01

341 papers 11,643 citations

54 h-index 92 g-index

341 all docs

341 does citations

times ranked

341

8712 citing authors

#	Article	IF	CITATIONS
1	Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions. Physical Review Letters, 2014, 112, .	7.8	497
2	Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Optics Letters, 2007, 32, 3549.	3.3	462
3	Ab initioinvestigations of optical properties of the high-pressure phases of ZnO. Physical Review B, 2005, 71, .	3.2	363
4	Wave front engineering from an array of thin aperture antennas. Optics Express, 2012, 20, 15882.	3.4	310
5	A stable compound of helium and sodium at high pressure. Nature Chemistry, 2017, 9, 440-445.	13.6	276
6	Novel Superhard Carbon: C-Centered Orthorhombic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mn>8</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2011, 107, 215502.	7.8	225
7	Optical orbital angular momentum from the curl of polarization. Physical Review Letters, 2010, 105, 253602.	7.8	219
8	Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption. Optics Communications, 2001, 197, 431-437.	2.1	209
9	Ionicities of Boron-Boron Bonds inB12Icosahedra. Physical Review Letters, 2005, 94, 015504.	7.8	207
10	A new type of vector fields with hybrid states of polarization. Optics Express, 2010, 18, 10786.	3.4	189
11	Generation of vector beam with space-variant distribution of both polarization and phase. Optics Letters, 2011, 36, 3179.	3.3	186
12	Tetragonal Allotrope of Group 14 Elements. Journal of the American Chemical Society, 2012, 134, 12362-12365.	13.7	170
13	Hardness of covalent compounds: Roles of metallic component and d valence electrons. Journal of Applied Physics, 2008, 104, .	2.5	166
14	Optical trapping with focused Airy beams. Applied Optics, 2011, 50, 43.	2.1	164
15	Characterizing topological charge of optical vortices by using an annular aperture. Optics Letters, 2009, 34, 3686.	3.3	137
16	Asymmetric transmission for linearly polarized electromagnetic radiation. Optics Express, 2011, 19, 8347.	3.4	126
17	<i>Ab initio</i> study of the formation of transparent carbon under pressure. Physical Review B, 2010, 82, .	3.2	119
18	First-principles study of electronic structure and optical properties of heterodiamondBC2N. Physical Review B, 2006, 73, .	3.2	113

#	Article	IF	CITATIONS
19	Tunable slow light in semiconductor metamaterial in a broad terahertz regime. Journal of Applied Physics, 2010, 107, .	2.5	112
20	Three Dimensional Carbon-Nanotube Polymers. ACS Nano, 2011, 5, 7226-7234.	14.6	110
21	Conical Second Harmonic Generation in a Two-Dimensionall‡(2)Photonic Crystal: A Hexagonally PoledLiTaO3Crystal. Physical Review Letters, 2004, 93, 133904.	7.8	108
22	4-ps passively mode-locked Nd:Gd_05Y_05VO_4 laser with a semiconductor saturable-absorber mirror. Optics Letters, 2004, 29, 2803.	3.3	105
23	A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Science Bulletin, 2018, 63, 817-824.	9.0	102
24	Two-dimensional magnetic boron. Physical Review B, 2016, 93, .	3.2	101
25	The Anomalous Infrared Transmission of Gold Films on Two-Dimensional Colloidal Crystals. Advanced Materials, 2006, 18, 1612-1616.	21.0	96
26	Two-photon-induced excited-state absorption: Theory and experiment. Applied Physics Letters, 2008, 92,	3.3	95
27	Phase-shifting error and its elimination in phase-shifting digital holography. Optics Letters, 2002, 27, 1687.	3.3	88
28	Spin Hall effect of reflected light from an air-glass interface around the Brewster's angle. Applied Physics Letters, 2012, 100, .	3.3	82
29	High-efficiency continuous-wave Raman conversion with a BaWO_4 Raman crystal. Optics Letters, 2009, 34, 1687.	3.3	81
30	Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction. Physical Review B, 2012, 85, .	3.2	81
31	Compressed carbon nanotubes: A family of new multifunctional carbon allotropes. Scientific Reports, 2013, 3, 1331.	3.3	80
32	Twisted vector field from an inhomogeneous and anisotropic metamaterial. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 572.	2.1	79
33	Optical properties of heterodiamond B2CN using first-principles calculations. Applied Physics Letters, 2004, 84, 4544-4546.	3.3	78
34	2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror. Applied Physics Letters, 2005, 86, 101103.	3.3	78
35	Two-dimensional microstructures induced by femtosecond vector light fields on silicon. Optics Express, 2012, 20, 120.	3.4	78
36	First-principles studies of structural and electronic properties of hexagonalBC5. Physical Review B, 2006, 73, .	3.2	75

3

#	Article	IF	CITATIONS
37	Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits. Applied Physics Letters, 2007, 91, 111111.	3.3	75
38	Variable cell nudged elastic band method for studying solid–solid structural phase transitions. Computer Physics Communications, 2013, 184, 2111-2118.	7.5	71
39	Optimal annulus structures of optical vortices. Optics Express, 2004, 12, 4625.	3.4	70
40	Z-scan theory for material with two- and three-photon absorption. Optics Express, 2005, 13, 9230.	3.4	70
41	Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes. Physical Review B, 2004, 70, .	3.2	69
42	Multiple superionic states in helium–water compounds. Nature Physics, 2019, 15, 1065-1070.	16.7	69
43	Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures. Physical Review B, 2008, 78, .	3.2	68
44	Configurable three-dimensional optical cage generated from cylindrical vector beams. Optics Communications, 2009, 282, 3421-3425.	2.1	68
45	Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3. Applied Physics Letters, 2003, 82, 3159-3161.	3.3	67
46	Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film. Applied Physics Letters, 2004, 85, 3687-3689.	3.3	67
47	Predicting hardness of dense C3N4 polymorphs. Applied Physics Letters, 2006, 88, 101906.	3.3	67
48	Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal. Applied Physics Letters, 2008, 92, 141115.	3.3	67
49	Z-scan theory of two-photon absorption saturation and experimental evidence. Journal of Applied Physics, 2007, 102, .	2.5	66
50	Most likely phase of superhard <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>BC</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:math> by <i>ab initio</i> calculations. Physical Review B, 2007, 76, .	3.2	62
51	Two-Dimensional Superlattice: Modulation of Band Gaps in Graphene-Based Monolayer Carbon Superlattices. Journal of Physical Chemistry Letters, 2012, 3, 3373-3378.	4.6	60
52	Origin of insulating behavior of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -type <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>3.2 >3<td>59 mn></td></td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	3.2 >3 <td>59 mn></td>	59 mn>
53	Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials. Optics Letters, 2011, 36, 1905.	3.3	59
54	Characterization of saturable absorbers using an open-aperture Gaussian-beamZscan. Physical Review A, 2006, 73, .	2.5	56

#	Article	IF	CITATIONS
55	Femtosecond Laser Processing by Using Patterned Vector Optical Fields. Scientific Reports, 2013, 3, 2281.	3.3	56
56	Hardness of cubic spinel Si3N4. Applied Physics Letters, 2004, 85, 5571-5573.	3.3	54
57	High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode. Applied Physics B: Lasers and Optics, 2004, 79, 301-304.	2.2	54
58	Taming the Collapse of Optical Fields. Scientific Reports, 2012, 2, 1007.	3.3	54
59	Third-harmonic generation in a general two-component quasi-periodic optical superlattice. Optics Letters, 2001, 26, 899.	3.3	53
60	Exotic Cubic Carbon Allotropes. Journal of Physical Chemistry C, 2012, 116, 24233-24238.	3.1	53
61	Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2651.	2.1	48
62	Prediction of a sandwichlike conducting superhard boron carbide: First-principles calculations. Physical Review B, 2006, 73, .	3.2	48
63	High-efficiency eye-safe intracavity Raman laser at 1531Ânm withÂSrWO4 crystal. Applied Physics B: Lasers and Optics, 2008, 93, 327-330.	2.2	48
64	Z-scan analytical theory for material with saturable absorption and two-photon absorption. Optics Communications, 2010, 283, 3525-3528.	2.1	47
65	Superconducting high-pressure phase of platinum hydride from first principles. Physical Review B, 2011, 84, .	3.2	47
66	Simultaneously efficient blue and red light generations in a periodically poled LiTaO3. Applied Physics Letters, 2001, 78, 3006-3008.	3.3	46
67	Two-dimensional wave-front reconstruction from lateral shearing interferograms. Optics Express, 2006, 14, 625.	3.4	46
68	Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342Ânm. Applied Physics B: Lasers and Optics, 2007, 89, 319-321.	2.2	46
69	Compressive Strength of Diamond from First-Principles Calculation. Journal of Physical Chemistry C, 2010, 114, 17851-17853.	3.1	46
70	Bulk Re ₂ C: Crystal Structure, Hardness, and Ultra-incompressibility. Crystal Growth and Design, 2010, 10, 5024-5026.	3.0	46
71	Generalized Poincaré sphere. Optics Express, 2015, 23, 26586.	3.4	46
72	Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3. Applied Physics Letters, 2001, 78, 577-579.	3.3	45

#	Article	IF	CITATIONS
73	Sharper focal spot generated by 4π tight focusing of higher-order Laguerre–Gaussian radially polarized beam. Optics Letters, 2013, 38, 3937.	3.3	45
74	Synthesis, properties of fullerene-containing polyurethane–urea and its optical limiting absorption. Polymer, 2003, 44, 2647-2654.	3.8	44
75	Investigation of optical nonlinearities in Pd(po)2 by Z-scan technique. Optik, 2003, 114, 58-62.	2.9	43
76	Tunable high-peak-power, high-energy hybrid Q-switched double-clad fiber laser. Optics Letters, 2004, 29, 724.	3.3	43
77	First-principles study of wurtzite <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">B</mml:mi><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:math> . Physical Review B. 2007. 76	3.2	43
78	Preparation of Metallodielectric Composite Particles with Multishell Structure. Langmuir, 2004, 20, 3042-3046.	3.5	42
79	Bond ionicities and hardness ofB13C2-like structuredByXcrystals(X=C,N,O,P,As). Physical Review B, 2006, 73, .	3.2	42
80	Superhard F-carbon predicted by <i>ab initio</i> particle-swarm optimization methodology. Journal of Physics Condensed Matter, 2012, 24, 165504.	1.8	42
81	Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering. Optics Communications, 2006, 259, 449-454.	2.1	41
82	Chalcopyrite polymorph for superhard BC2N. Applied Physics Letters, 2006, 89, 151911.	3.3	41
83	Polarization singularities: Progress, fundamental physics, and prospects. APL Photonics, 2021, 6, 040901.	5.7	41
84	Three-photon absorption saturation in ZnO and ZnS crystals. Journal of Applied Physics, 2008, 103, .	2.5	40
85	Continuous-wave intracavity Raman laser at 1179.5Ânm withÂSrWO4 Raman crystal inÂdiode-end-pumped Nd:YVO4Âlaser. Applied Physics B: Lasers and Optics, 2009, 94, 553-557.	2.2	40
86	Effect of the fill factor of CCD pixels on digital holograms: comment on the papers "Frequency analysis of digital holography―and "Frequency analysis of digital holography with reconstruction by convolution― Optical Engineering, 2003, 42, 2768.	1.0	39
87	Optimal annular computer-generated holograms for the generation of optical vortices. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 385.	1.5	39
88	Crystal structure and stability of magnesium borohydride from first principles. Physical Review B, 2009, 79, .	3.2	39
89	Encryption of ghost imaging. Physical Review A, 2013, 88, .	2.5	39
90	Managing orbital angular momentum in second-harmonic generation. Physical Review A, 2013, 88, .	2.5	39

#	Article	IF	CITATIONS
91	Refined Crystal Structure and Mechanical Properties of Superhard BC ₄ N Crystal: First-Principles Calculations. Journal of Physical Chemistry C, 2008, 112, 9516-9519.	3.1	38
92	Slow Light and Superluminality in Kerr Media without a Pump. Physical Review Letters, 2005, 95, 063902.	7.8	36
93	Theoretical hardness of the cubic BC2N. Diamond and Related Materials, 2007, 16, 526-530.	3.9	36
94	Redistributing the energy flow of tightly focused ellipticity-variant vector optical fields. Photonics Research, 2017, 5, 640.	7.0	35
95	Simultaneous cw red, yellow, and green light generation, "traffic signal lights,―by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3. Applied Physics Letters, 2003, 83, 228-230.	3.3	33
96	Optical vortex phase-shifting digital holography. Optics Express, 2004, 12, 5166.	3.4	33
97	Z-scan technique for investigation of the noninstantaneous optical Kerr nonlinearity. Optics Letters, 2009, 34, 2769.	3.3	33
98	Coexistence of plastic and partially diffusive phases in a helium-methane compound. National Science Review, 2020, 7, 1540-1547.	9.5	33
99	Body-centered superhard <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">B</mml:mi><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:math> phases from first principles. Physical	3.2	32
100	A tetragonal phase of superhard BC2N. Journal of Applied Physics, 2009, 105, .	2.5	32
101	Slow light in a simple metamaterial structure constructed by cut and continuous metal strips. Applied Physics B: Lasers and Optics, 2010, 100, 699-703.	2.2	32
102	Red, yellow, green and blue – four-color light from a single, aperiodically poled LiTaO3 crystal. Applied Physics B: Lasers and Optics, 2004, 78, 265-267.	2.2	31
103	Spin angular momentum density and transverse energy flow of tightly focused kaleidoscope-structured vector optical fields. APL Photonics, 2019, 4, 096102.	5.7	30
104	A bidirectional tunable optical diode based on periodically poled LiNbO_3. Optics Express, 2010, 18, 7340.	3.4	29
105	Unexpected Reconstruction of theî±-Boron (111) Surface. Physical Review Letters, 2014, 113, 176101.	7.8	29
106	Arbitrarily tunable orbital angular momentum of photons. Scientific Reports, 2016, 6, 29212.	3.3	29
107	Engineering of a dual-periodic optical superlattice used in a coupled optical parametric interaction. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1676.	2.1	28
108	FDTD approach to optical forces of tightly focused vector beams on metal particles. Optics Express, 2009, 17, 8407.	3.4	28

#	Article	IF	Citations
109	Unusual compression behavior of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn> from first principles. Physical Review B, 2010, 82, .</mml:mn></mml:msub></mml:mrow></mml:math>	2 ∉n aml:m	n 28 /mml:ms
110	Dynamics of two-photon-induced three-photon absorption in nanosecond, picosecond, and femtosecond regimes. Optics Letters, 2010, 35, 417.	3.3	28
111	Controllable optical black hole in left-handed materials. Optics Express, 2010, 18, 2106.	3.4	28
112	High-pressure behaviors of carbon nanotubes. Journal of Superhard Materials, 2012, 34, 371-385.	1.2	28
113	Critical route for coherent perfect absorption in a Fano resonance plasmonic system. Applied Physics Letters, 2014, 105, .	3.3	28
114	Plastic and Superionic Helium Ammonia Compounds under High Pressure and High Temperature. Physical Review X, 2020, 10, .	8.9	28
115	Polarization structuring of focused field through polarization-only modulation of incident beam. Optics Letters, 2010, 35, 2825.	3.3	27
116	Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm. Journal of Optics (United Kingdom), 2013, 15, 035401.	2.2	27
117	Non-diffracting and self-accelerating Bessel beams with on-demand tailored intensity profiles along arbitrary trajectories. Optics Letters, 2021, 46, 1494.	3.3	27
118	Surface plasmon polaritons at interfaces associated with artificial composite materials. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2686.	2.1	26
119	Effects of orbital angular momentum on the geometric spin Hall effect of light. Physical Review A, 2012, 85, .	2.5	26
120	Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization. Photonics Research, 2016, 4, B29.	7.0	26
121	Predicting the ground-state structure of sodium boride. Physical Review B, 2018, 97, .	3.2	26
122	Spin-to-orbital angular momentum conversion via light intensity gradient. Optica, 2021, 8, 1231.	9.3	26
123	Unveiling locally linearly polarized vector fields with broken axial symmetry. Physical Review A, 2011, 83, .	2.5	25
124	Strong tunable absorption enhancement in graphene using dielectric-metal core-shell resonators. Scientific Reports, 2017, 7, 32.	3.3	25
125	Magnetic borophenes from an evolutionary search. Physical Review B, 2019, 99, .	3.2	25
126	High efficiency generation of tunable ellipse perfect vector beams. Photonics Research, 2018, 6, 1116.	7.0	25

#	Article	IF	CITATIONS
127	Electronegativity and chemical hardness of elements under pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117416119.	7.1	25
128	Angular diffraction of an optical vortex induced by the Gouy phase. Journal of Optics (United) Tj ETQq0 0 0 rgB1	Oyerlock	10 Tf 50 702
129	Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate. Optics Letters, 2018, 43, 823.	3.3	24
130	Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light: Science and Applications, 2020, 9, 52.	16.6	24
131	Mutually pumped phase conjugator with a rainbow configuration in BaTiO_3:Ce crystal using nanosecond pulses. Optics Letters, 1996, 21, 561.	3.3	23
132	Incoherent-to-coherent conversion by use of the photorefractive fanning effect. Optics Letters, 1997, 22, 1612.	3.3	23
133	Optically uniaxial left-handed materials. Physical Review B, 2005, 72, .	3.2	23
134	Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields. Optics Express, 2013, 21, 31469.	3.4	23
135	Vector optical fields with bipolar symmetry of linear polarization. Optics Letters, 2013, 38, 3700.	3.3	23
136	A new phase from compression of carbon nanotubes with anisotropic Dirac fermions. Scientific Reports, 2015, 5, 10713.	3.3	23
137	Unbinding force of chemical bonds and tensile strength in strong crystals. Journal of Physics Condensed Matter, 2009, 21, 485405.	1.8	22
138	Fano–Feshbach resonance in structural symmetry broken metamaterials. Journal of Applied Physics, 2011, 109, 014901.	2.5	22
139	An <i>ab initio</i> study on the transition paths from graphite to diamond under pressure. Journal of Physics Condensed Matter, 2013, 25, 145402.	1.8	22
140	Elliptic-symmetry vector optical fields. Optics Express, 2014, 22, 19302.	3.4	22
141	Young's two-slit interference of vector light fields. Optics Letters, 2012, 37, 1790.	3.3	21
142	Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum. Physical Review A, 2012, 85, .	2.5	21
143	Predicting three-dimensional icosahedron-based boron <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">B</mml:mi><mml:mn>60</mml:mn></mml:msub></mml:math> . Physical Review B, 2019, 99, .	3.2	21
144	A scheme to realize three-fundamental-colors laser based on quasi-phase matching. Solid State Communications, 2001, 119, 363-366.	1.9	20

#	Article	IF	CITATIONS
145	Total transmission of electromagnetic waves at interfaces associated with an indefinite medium. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 904.	2.1	20
146	Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model. Optics Express, 2018, 26, 1597.	3.4	20
147	Manipulation of eight-dimensional Bell-like states. Science Advances, 2019, 5, eaat9206.	10.3	20
148	Mixed Coordination Silica at Megabar Pressure. Physical Review Letters, 2021, 126, 035701.	7.8	20
149	Quasi-Cw Ultraviolet Generation in a Dual-periodic LiTaO3Superlattice by Frequency Tripling. Japanese Journal of Applied Physics, 2001, 40, 6841-6844.	1.5	19
150	Phase-shifting with computer-generated holograms written on a spatial light modulator. Applied Optics, 2003, 42, 6975.	2.1	19
151	The atomic structures of carbon nitride sheets for cathode oxygen reduction catalysis. Journal of Chemical Physics, 2013, 138, 164706.	3.0	19
152	Superionic Silica-Water and Silica-Hydrogen Compounds in the Deep Interiors of Uranus and Neptune. Physical Review Letters, 2022, 128, 035702.	7.8	19
153	Determination of optical nonlinearities in Cu(mpo)2 by Z-scan technique. Optical and Quantum Electronics, 2003, 35, 693-703.	3.3	18
154	530-mW quasi-white-light generation using all-solid-state laser technique. Journal of Applied Physics, 2004, 96, 7756-7758.	2.5	18
155	Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal. Applied Physics Letters, 2004, 85, 188-190.	3.3	18
156	Passively mode-locking Nd:Gd_05Y_05VO_4 laser with an In_025Ga_075As absorber grown at low temperature. Applied Optics, 2005, 44, 4384.	2.1	18
157	Determinations of third- and fifth-order nonlinearities by the use of the top-hat-beam Z scan: theory and experiment. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 446.	2.1	18
158	High-efficiency continuous-wave and Q-switched diode-end-pumped multi-wavelength Nd:YAG lasers. Optics Communications, 2006, 265, 301-305.	2.1	18
159	Parabolic-symmetry vector optical fields and their tightly focusing properties. Physical Review A, 2014, 89, .	2.5	18
160	High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator. Applied Optics, 2017, 56, 6175.	1.8	18
161	Sub-10 nm stable graphene quantum dots embedded in hexagonal boron nitride. Nanoscale, 2019, 11, 4226-4230.	5.6	18
162	Studies on formation mechanisms of self-pumped phase conjugation in BaTiO_3:Ce crystals at wavelengths from 570 to 680 nm. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 1048.	2.1	17

#	Article	IF	Citations
163	Generation of 840ÂmW of red light by frequency doubling a diode-pumped 1342Ânm Nd:YVO4 laser with periodically-poled LiTaO3. Applied Physics B: Lasers and Optics, 2002, 74, 537-539.	2.2	17
164	Diode-End-Pumped Passively CW Mode-Locked Nd:YLF Laser by the LT-In <tex>\$_0.25\$</tex> Ga <tex>\$_0.75\$</tex> As Absorber. IEEE Journal of Quantum Electronics, 2006, 42, 1097-1100.	1.9	17
165	Infrared and Raman spectra ofl2â^BC2Nfrom first principles calculations. Physical Review B, 2006, 74, .	3.2	17
166	Formation, structure, and electric property of CaB4 single crystal synthesized under high pressure. Applied Physics Letters, 2010, 96, .	3.3	17
167	Z-scan theory with simultaneous two- and three-photon absorption saturation. Optics and Laser Technology, 2012, 44, 390-393.	4.6	17
168	An efficient and robust scheme for controlling the states of polarization in a Sagnac interferometric configuration. Europhysics Letters, 2014, 105, 64006.	2.0	17
169	INVESTIGATION OF THE INFLUENCE OF FINITE APERTURE SIZE ON THE Z-SCAN TRANSMITTANCE CURVE. Journal of Nonlinear Optical Physics and Materials, 2001, 10, 431-439.	1.8	16
170	Second Z-scan in materials with nonlinear refraction and nonlinear absorption. Journal of Optics, 2002, 4, 504-508.	1.5	16
171	Investigations into the mid-infrared Christiansen effect of the dispersive materials. Infrared Physics and Technology, 2002, 43, 401-405.	2.9	16
172	Large lateral shift near pseudo-Brewster angle on reflection from a weakly absorbing double negative medium. Optics Express, 2006, 14, 10574.	3.4	16
173	Hardness of α- and β-Si3â^'nCnN4 (n=0, 1, 2, 3) crystals. Diamond and Related Materials, 2009, 18, 72-75.	3.9	16
174	A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/YVO4 crystal. Applied Physics B: Lasers and Optics, 2010, 101, 493-496.	2.2	16
175	Vectorial self-diffraction effect in optically Kerr medium. Optics Express, 2012, 20, 149.	3.4	16
176	Light field shaping by tailoring both phase and polarization. Applied Optics, 2014, 53, 785.	1.8	16
177	Wavefront manipulation with a dipolar metasurface under coherent control. Journal of Applied Physics, 2017, 122, .	2.5	16
178	Helium-nitrogen mixtures at high pressure. Physical Review B, 2021, 103, .	3.2	16
179	Ultrahigh-Pressure Magnesium Hydrosilicates as Reservoirs of Water in Early Earth. Physical Review Letters, 2022, 128, 035703.	7.8	16
180	Z-scan technique for characterizing third-order optical nonlinearity by use of quasi-one-dimensional slit beams. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 968.	2.1	15

#	Article	IF	CITATIONS
181	Ground-state properties and hardness of high density BC6N phases originating from diamond structure. Journal of Applied Physics, 2007, 101, 083505.	2.5	15
182	Fractal vector optical fields. Optics Letters, 2016, 41, 3161.	3.3	15
183	Formation of copper boride on Cu(111). Fundamental Research, 2021, 1, 482-487.	3.3	15
184	Low-dimensional boron: searching for Dirac materials. Advances in Physics: X, 2016, 1, 412-424.	4.1	14
185	Femtosecond polarization-structured optical field meets an anisotropic nonlinear medium. Optics Express, 2018, 26, 27726.	3.4	14
186	Extending optical filaments with phase-nested laser beams. Photonics Research, 2018, 6, 1130.	7.0	14
187	Determination of global phase shifts between interferograms by use of an energy-minimum algorithm. Applied Optics, 2003, 42, 6514.	2.1	13
188	Three-wave shearing interferometer based on spatial light modulator. Optics Express, 2009, 17, 970.	3.4	13
189	Dual-band unidirectional circular polarizer with opposite handedness filtration using hybridized metamaterial. Optics Express, 2014, 22, 9301.	3.4	13
190	Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields. Optics Letters, 2016, 41, 1474.	3.3	13
191	Superhard and superconducting B6C. Materials Today Physics, 2017, 3, 76-84.	6.0	13
192	Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams. Applied Optics, 2019, 58, 6591.	1.8	13
193	Ab Initio Study of Structural and Electronic Properties of Hexagonal BC 2 N. Chinese Physics Letters, 2006, 23, 2175-2178.	3.3	12
194	Enhanced sensitivity of Z-scan technique by use of flat-topped beam. Applied Physics B: Lasers and Optics, 2009, 95, 773-778.	2.2	12
195	Optical spin-dependent angular shift in structured metamaterials. Optics Letters, 2011, 36, 3942.	3.3	12
196	Focal shift in tightly focused Laguerre–Gaussian beams. Optics Communications, 2015, 334, 156-159.	2.1	12
197	Vector optical fields broken in the spatial frequency domain. Physical Review A, 2016, 93, .	2.5	12
198	Tunable polarization singularity array enabled using superposition of vector curvilinear beams. Applied Physics Letters, 2019, 114, .	3.3	12

#	Article	IF	CITATIONS
199	Electronically Driven 1D Cooperative Diffusion in a Simple Cubic Crystal. Physical Review X, 2021, 11, .	8.9	12
200	Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding. Applied Physics Letters, 2006, 89, 051916.	3.3	11
201	A precise data processing method for extracting \ddot{l} ‡(3) from Z-scan technique. Optics Communications, 2007, 277, 209-213.	2.1	11
202	Tri-arm multipinhole interferometer for wavefront measurement and diffractive imaging. Applied Optics, 2009, 48, 5099.	2.1	11
203	Universal Phase Transitions of <i>B</i> 1-Structured Stoichiometric Transition Metal Carbides. Inorganic Chemistry, 2011, 50, 9266-9272.	4.0	11
204	Vector optical fields with polarization distributions similar to electric and magnetic field lines. Optics Express, 2013, 21, 16200.	3.4	11
205	Spawning a ring of exceptional points from a metamaterial. Optics Express, 2017, 25, 18265.	3.4	11
206	Three-dimensional vectorial multifocal arrays created by pseudo-period encoding. Journal of Optics (United Kingdom), 2018, 20, 065605.	2.2	11
207	Optical frequency conversion of light with maintaining polarization and orbital angular momentum. Optics Letters, 2021, 46, 2300.	3.3	11
208	Highly purified transversely polarized optical needle generated by the hybridly polarized vector optical field with hyperbolic symmetry. Journal of Optics (United Kingdom), 2020, 22, 105604.	2.2	11
209	Low-power and broadband optical bistability by excitation of surface plasmons in doped polymer film. Applied Optics, 1993, 32, 4495.	2.1	10
210	Theoretical and experimental studies of three-photon-induced excited-state absorption. Applied Physics Letters, 2010, 96, .	3. 3	10
211	Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display. Applied Optics, 2010, 49, 1069.	2.1	10
212	Determination of the nonlinear refractive index in multiphoton absorbers by Z-scan measurements. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2438.	2.1	10
213	Large shear strength enhancement of gamma-boron by normal compression. Journal of Superhard Materials, 2011, 33, 401-408.	1.2	10
214	Highâ€pressure phases of NaAlH4 from first principles. Applied Physics Letters, 2012, 100, 061905.	3.3	10
215	Control of femtosecond multi-filamentation in glass by designable patterned optical fields. AIP Advances, 2016, 6, .	1.3	10
216	Complete measurement and multiplexing of orbital angular momentum Bell states. Physical Review A, $2019, 100, .$	2. 5	10

#	Article	IF	CITATIONS
217	Third-harmonic generation of spatially structured light in a quasi-periodically poled crystal. Optica, 2022, 9, 183.	9.3	10
218	Theoretical study of saturable Kerr nonlinearity using top-hat beam Z-scan technique. Optics Communications, 2006, 263, 322-327.	2.1	9
219	Propagation of Laguerre–Gaussian beams in cubic–quintic nonlinear media by variational approach. Optics and Laser Technology, 2010, 42, 1318-1322.	4.6	9
220	Near-field phase singularity in subwavelength metallic microstructures. Physical Review A, 2011, 84, .	2.5	9
221	Control on helical filaments by twisted beams in a nonlinear CS ₂ medium. Optics Express, 2018, 26, 29527.	3.4	9
222	Compact, robust, and high-efficiency generator of vector optical fields. Optics Letters, 2019, 44, 2382.	3.3	9
223	Measuring spatial coherence by using a lateral shearing interferometry. Applied Optics, 2019, 58, 56.	1.8	9
224	Red and Blue Light Generation in an LiTaO 3 Crystal with a Double Grating Domain Structure. Chinese Physics Letters, 2001, 18, 539-540.	3.3	8
225	AN ACCURATE METHOD FOR EXTRACTING NONLINEAR REFRACTION BY Z-SCAN TECHNIQUE IN THE PRESENCE OF NONLINEAR ABSORPTION. Journal of Nonlinear Optical Physics and Materials, 2003, 12, 307-315.	1.8	8
226	Electromagnetic transmission through one-dimensional gratings with left-handed materials. Physical Review B, 2007, 75, .	3.2	8
227	Prediction of graphitelike BC4N from first-principles calculations. Journal of Applied Physics, 2009, 105, .	2.5	8
228	Flat-plateau supercontinuum generation in liquid absorptive medium by femtosecond filamentation. Optics Letters, 2010, 35, 2925.	3.3	8
229	Self-formed two-dimensional near-wavelength microstructures on copper induced by multipulse femtosecond vector optical fields. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2282.	2.1	8
230	Tunable local surface plasmon resonance in liquid-crystal-coated Ag nanoparticles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1199-1204.	2.1	8
231	Image encryption based on fractal-structured phase mask in fractional Fourier transform domain. Journal of Optics (United Kingdom), 2018, 20, 045703.	2.2	8
232	Controlling optical field collapse by elliptical symmetry hybrid polarization structure. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2373.	2.1	8
233	Inverse method to engineer uniform-intensity focal fields with arbitrary shape. Optics Express, 2018, 26, 16782.	3.4	8
234	Observation of polarization topological singular lines. Photonics Research, 2019, 7, 705.	7.0	8

Bessel-like beams with controllable rotating local linear polarization during propagation. Optics Letters, 2020, 45, 1738. Image transmission through a thick dynamic distorter by the photorefractive fanning effect. Optics Letters, 1998, 23, 585. 237 One-way image transmission through a thick dynamic distorter without a reference beam. Applied Physics Letters, 1998, 72, 630-632. 238 Propagation properties of a light wave in a film quasiwaveguide structure. Journal of Applied Physics, 202, 92, 5647-5657. 239 Theory of optical bistability in a non-linear quasi-waveguide. Applied Physics B: Lasers and Optics, 2002, 75, 865-869. 240 Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice. Physical Review A, 2003, 68, . 241 Nonradiative transition mechanism on the surface of nanocrystallineLa0.85r0.2FeO3probed by Photoacoustic and surface photovoltaic techniques. Physical Review B, 2007, 75, . 242 A linearly polarized continuous-wave 1357-nm Nd:YAG laser. Applied Physics B: Lasers and Optics, 2007, 86, 443-445. 243 Phase contrast Talbot array illuminators. Optics Letters, 2008, 33, 818. 244 A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. 245 Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010, 35, 850.	8 7 7 7 7 7
237 One-way image transmission through a thick dynamic distorter without a reference beam. Applied Physics Letters, 1998, 72, 630-632. 238 Propagation properties of a light wave in a film quasiwaveguide structure. Journal of Applied Physics, 2002, 92, 5647-5657. 239 Theory of optical bistability in a non-linear quasi-waveguide. Applied Physics B: Lasers and Optics, 2002, 75, 865-869. 240 Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice. Physical Review A, 2003, 68. 241 Nonradiative transition mechanism on the surface of nanocrystallineLa0.85r0.2FeO3probed by photoacoustic and surface photovoltaic techniques. Physical Review B, 2007, 75,. 242 A linearly polarized continuous-wave 1357-nm Nd:YAG laser. Applied Physics B: Lasers and Optics, 2007, 86, 443-445. 243 Phase contrast Talbot array illuminators. Optics Letters, 2008, 33, 818. 244 A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. 245 Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010,	7 7 7
Propagation properties of a light wave in a film quasiwaveguide structure. Journal of Applied Physics, 2.5 2002, 92, 5647-5657. 2.5 Theory of optical bistability in a non-linear quasi-waveguide. Applied Physics B: Lasers and Optics, 2002, 75, 865-869. 2.2 Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice. Physical Review A, 2003, 68, . 2.5 Nonradiative transition mechanism on the surface of nanocrystallineLa0.8Sr0.2FeO3probed by photoacoustic and surface photovoltaic techniques. Physical Review B, 2007, 75, . 3.2 A linearly polarized continuous-wave 1357-nm Nd:YAG laser. Applied Physics B: Lasers and Optics, 2007, 86, 443-445. 2.2 Phase contrast Talbot array illuminators. Optics Letters, 2008, 33, 818. 3.3 A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. 3.4	7 7 7
Theory of optical bistability in a non-linear quasi-waveguide. Applied Physics B: Lasers and Optics, 2002, 75, 865-869. Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice. Physical Review A, 2003, 68, . Nonradiative transition mechanism on the surface of nanocrystallineLa0.8Sr0.2FeO3probed by photoacoustic and surface photovoltaic techniques. Physical Review B, 2007, 75, . A linearly polarized continuous-wave 1357-nm Nd:YAG laser. Applied Physics B: Lasers and Optics, 2007, 86, 443-445. Phase contrast Talbot array illuminators. Optics Letters, 2008, 33, 818. 3.3 A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010,	7 7
Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice. Physical Review A, 2003, 68, . 2.5 Nonradiative transition mechanism on the surface of nanocrystallineLa0.8Sr0.2FeO3probed by photoacoustic and surface photovoltaic techniques. Physical Review B, 2007, 75, . 3.2 A linearly polarized continuous-wave 1357-nm Nd:YAG laser. Applied Physics B: Lasers and Optics, 2007, 86, 443-445. 2.2 Phase contrast Talbot array illuminators. Optics Letters, 2008, 33, 818. 3.3 A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. 3.4 Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010, 3.5	7
by an electro-optic effect in a periodic optical superlattice. Physical Review A, 2003, 68, . Nonradiative transition mechanism on the surface of nanocrystallineLa0.8Sr0.2FeO3probed by photoacoustic and surface photovoltaic techniques. Physical Review B, 2007, 75, . A linearly polarized continuous-wave 1357-nm Nd:YAG laser. Applied Physics B: Lasers and Optics, 2007, 86, 443-445. Phase contrast Talbot array illuminators. Optics Letters, 2008, 33, 818. A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010,	7
photoacoustic and surface photovoltaic techniques. Physical Review B, 2007, 75, . A linearly polarized continuous-wave 1357-nm Nd:YAG laser. Applied Physics B: Lasers and Optics, 2007, 86, 443-445. Phase contrast Talbot array illuminators. Optics Letters, 2008, 33, 818. A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010, 2015.	
242 86, 443-445. 243 Phase contrast Talbot array illuminators. Optics Letters, 2008, 33, 818. 244 A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. 3.4 Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010, 28	7
A new planar left-handed metamaterial composed of metal-dielectric-metal structure. Optics Express, 2008, 16, 8617. Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010,	•
2008, 16, 8617. Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010,	7
Real-time coherent diffractive imaging with convolution-solvable sampling array. Optics Letters, 2010, 35, 850.	7
	7
Broadband colored-crescent generation in a singleβ-barium-borate crystal by intense femtosecond pulses. Physical Review A, 2011, 84, .	7
Separation of spin angular momentum in space-variant linearly polarized beam. Applied Physics B: Lasers and Optics, 2014, 114, 355-359.	7
248 Hyperbolic-symmetry vector fields. Optics Express, 2015, 23, 32238. 3.4	7
Ghost Imaging with High Visibility Using Classical Light Source. Chinese Physics Letters, 2016, 33, 034203.	7
Dielectric broadband meta-vector-polarizers based on nematic liquid crystal. APL Photonics, 2017, 2, . 5.7	7
Two-dimensional boron on Pb (1 1 0) surface. FlatChem, 2018, 7, 34-41.	

Predicted lithium oxide compounds and superconducting low-pressure <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LiO</mml:mi><mml:mn>4</mml:mn3.2/mml:msub></mm Physical Review B, 2019, 100, .

#	Article	IF	CITATIONS
253	Asymptotical Locking Tomography of High-Dimensional Entanglement*. Chinese Physics Letters, 2020, 37, 034204.	3.3	7
254	All-optical bistability in doped-polymer film waveguides. Applied Optics, 1995, 34, 6892.	2.1	6
255	Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices. Optics Letters, 2003, 28, 429.	3.3	6
256	Simultaneous high-efficiency and equal-level second- and third-harmonic generation achieved by controllable linear gratings in a quasiperiodic optical superlattice. Physical Review A, 2003, 68, .	2.5	6
257	Effects of processing on all-optical poling characteristics of guest-host azo-dye polymer thin films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1114-1122.	1.8	6
258	Wang <i>et al.</i> Reply:. Physical Review Letters, 2011, 106, .	7.8	6
259	Near-field plasmonic coupling for enhanced nonlinear absorption by femtosecond pulses in bowtie nanoantenna arrays. Applied Physics A: Materials Science and Processing, 2014, 117, 1841-1848.	2.3	6
260	Security enhancement of double-random phase encryption by iterative algorithm. Journal of Optics (United Kingdom), 2014, 16, 085401.	2.2	6
261	Efficient continuous-wave eye-safe Nd:YVO ₄ self-Raman laser at 1.5  µm. Optics Letters, 2 46, 3183.	021,	6
262	Polarization interferometric prism: A versatile tool for generation of vector fields, measurement of topological charges, and implementation of a spin–orbit controlled-Not gate. Applied Physics Letters, 2021, 118, .	3.3	6
263	Theory and properties of quasiwaveguide modes. Applied Physics Letters, 1996, 69, 611-613.	3.3	5
264	Single Pass Third-Harmonic Generation of 310 mW of 355 nm with an All-Solid-State Laser. Chinese Physics Letters, 2001, 18, 1589-1591.	3.3	5
265	Simple and efficient technique for evaluating the optical losses from surface scattering and volume attenuation in a thin film. Optics Express, 2002, 10, 1485.	3.4	5
266	Low-threshold and high-efficiency optical parametric oscillator using a one-dimensional single-defect photonic crystal with quadratic nonlinearity. Physical Review B, 2006, 73, .	3.2	5
267	Nonlinear properties of polyurethane-urea/multi-wall carbon nanotube composite films. Optics and Laser Technology, 2010, 42, 956-959.	4.6	5
268	Second-harmonic generation in one-dimensional metal gratings with dual extraordinary transmissions. Journal of Applied Physics, 2010, 107, 053108.	2.5	5
269	Efficient green-light generation by frequency doubling of a picosecond all-fiber ytterbium-doped fiber amplifier in PPKTP waveguide inscribed by femtosecond laser direct writing. Optics Express, 2010, 18, 25183.	3.4	5
270	Excited-state enhancement of third-order optical nonlinearities: photodynamics and characterization. Optics Express, 2010, 18, 26843.	3.4	5

#	Article	IF	Citations
271	Enhanced optical angular momentum in cylinder waveguides with negative-index metamaterials. Journal of Optics (United Kingdom), 2012, 14, 045703.	2.2	5
272	Phase conjugation of vector fields by degenerate four-wave mixing in a Fe-doped LiNbO_3. Optics Letters, 2014, 39, 4907.	3.3	5
273	Recording and reconstruction of vector fields in a Fe-doped LiNbO_3 crystal. Optics Letters, 2014, 39, 1917.	3.3	5
274	Pseudo-topological property of Julia fractal vector optical fields. Optics Express, 2019, 27, 13263.	3.4	5
275	Phase transition of layer-stacked borophene under pressure. Physical Review B, 2022, 105, .	3.2	5
276	Mechanism transition of self-pumped phase conjugation in KTa1 ?xNbxO3:Fe crystals. Applied Physics B: Lasers and Optics, 1994, 59, 655-658.	2.2	4
277	Observation of Optical Bistabilities in a Doped Polymer Thin Film Quasi-waveguide. Chinese Physics Letters, 1995, 12, 210-212.	3.3	4
278	Mid-infrared Photon Localization Using Two Kinds of Mid-infrared Materials as Random Scatterers. Chinese Physics Letters, 2002, 19, 1353-1355.	3.3	4
279	Dual localizations for second-harmonic generations using left-handed materials. Applied Physics Letters, 2005, 87, 251104.	3.3	4
280	Negative refractive index of energy flow in Veselago materials. Europhysics Letters, 2008, 83, 67007.	2.0	4
281	Polarization splitter of surface polaritons. Physical Review B, 2009, 79, .	3.2	4
282	Uniformly elliptically-polarized vector optical fields. Journal of Optics (United Kingdom), 2015, 17, 035616.	2.2	4
283	Curvilinear Poincaré vector beams. Chinese Optics Letters, 2021, 19, 032602.	2.9	4
284	Radially self-accelerating Stokes vortices in nondiffracting Bessel–Poincaré beams. Applied Optics, 2021, 60, 8659.	1.8	4
285	Tunable azimuthally non-uniform orbital angular momentum carried by vector optical fields. Chinese Optics Letters, 2020, 18, 122601.	2.9	4
286	Dynamically taming focal fields of femtosecond lasers for fabricating microstructures. Chinese Optics Letters, 2022, 20, 010502.	2.9	4
287	High-Precision Calibration of Phase-Only Spatial Light Modulators. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	4
288	Temperature-induced electride transition in dense lithium. Physical Review B, 2022, 105, .	3.2	4

#	Article	IF	CITATIONS
289	Control of harmonic orbital angular momentum in second-harmonic generation of perfect vortices. Physical Review A, 2022, 105, .	2.5	4
290	Local angular momentum induced dual orbital effect. APL Photonics, 2022, 7, .	5.7	4
291	Saturation effect and forward-dominant second-harmonic generation in single-defect photonic crystals with dual localizations. Optics Letters, 2006, 31, 3327.	3.3	3
292	Continuous transform of transverse modes and transitional status analysis in solid-state laser. Optics Express, 2006, 14, 5295.	3.4	3
293	Actively-controlled polarization independent extraordinary electromagnetic transmission in one-dimensional metal gratings. Applied Physics B: Lasers and Optics, 2010, 98, 681-684.	2.2	3
294	Theoretical study on stability of Z-scan technique by use of quasi-one-dimensional slit beam. Optik, 2011, 122, 1152-1158.	2.9	3
295	Focal shift of flat-topped beams passing through a lens system with or without aperture. Optik, 2012, 123, 1440-1443.	2.9	3
296	Fingerprints of topological defects in a metasurface. Optics Letters, 2014, 39, 4879.	3.3	3
297	Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields. Chinese Physics Letters, 2017, 34, 044204.	3.3	3
298	Extremely sharp transmission peak in optically thin aluminum film with hexagonal nanohole arrays. Journal of Optics (United Kingdom), 2018, 20, 105002.	2.2	3
299	Unveiling of control on the polarization of supercontinuum spectra based on ultrafast birefringence induced by filamentation. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2916.	2.1	3
300	Theoretical analysis based on mirror symmetry for tightly focused vector optical fields. Optics Express, 2020, 28, 23416.	3.4	3
301	Double-slit interference of single twisted photons. Chinese Optics Letters, 2020, 18, 102601.	2.9	3
302	Partially Diffusive Helium-Silica Compound under High Pressure. Chinese Physics Letters, 0, , .	3.3	3
303	High-resolution photorefractive incoherent-to-coherent optical converter. Optics Communications, 2000, 182, 237-241.	2.1	2
304	Electro-optically controlled efficiencies in a QPM coupled parametric process. Applied Physics B: Lasers and Optics, 2003, 76, 797-800.	2.2	2
305	一ç»′完美é‡'å±žåŒæ…结构的电ç£é€å°"特性. Chinese Optics Letters, 2010, 8, 807.	2.9	2
306	Ultrabroadband SCG with quasi-continuous wave nanosecond-long pump pulses in PCF. Chinese Optics Letters, 2011, 9, 071405-71407.	2.9	2

#	Article	IF	CITATIONS
307	Analytical formulae of tightly focused Laguerre–Gaussian vector fields. Journal of Optics (United) Tj ETQq1	1 0.784314 2.2	· rgBŢ /Overlo
308	Entanglement and nonlocality in a coupled-cavity system. Photonics Research, 2017, 5, 224.	7.0	2
309	Twin curvilinear vortex beams. Optics Express, 2021, 29, 14112.	3.4	2
310	Time-resolved multiple imaging by detecting photons with changeable wavelengths. Chinese Optics Letters, 2017, 15, 081101.	2.9	2
311	Propagation characteristics of orbital angular momentum modes at 810Ânm in step-index few-mode fibers. Chinese Optics Letters, 2019, 17, 120601.	2.9	2
312	Diffraction properties and applications of spatially structured optical fields with fractal amplitude masks. Applied Optics, 2019, 58, 8631.	1.8	2
313	Experimental self-testing for photonic graph states. Optics Express, 2022, 30, 101.	3.4	2
314	Stronger Hardy-Like Proof of Quantum Contextuality. Photonics Research, 0, , .	7.0	2
315	Properties of leaky and degenerate modes in a prism–film coupler with waveguide structure. Journal of Applied Physics, 2003, 94, 7025-7030.	2.5	1
316	INVESTIGATION OF NEAR TWO-PHOTON RESONANCE OPTICAL NONLINEARITIES IN Ni(Ac)2[N-(8-QUINOLYL) PYRIDINE-2-CARBOXAMIDE] \hat{A} - 4H2O BY THE Z-SCAN TECHNIQUE. Journal of Nonlinear Optical Physics and Materials, 2003, 12, 81-89.	1.8	1
317	Fidelities of output coherent images produced by photorefractive two-wave mixing. Applied Physics B: Lasers and Optics, 2004, 78, 59-63.	2.2	1
318	Determination of third- and fifth-order nonlinear coefficients by using quasi-one-dimensional slit beam Z-scan technique. Journal of Applied Physics, 2009, 105, 033104.	2.5	1
319	Linear and Nonlinear Optical Properties of Ferroelectric Thin Films. , 2011, , .		1
320	Vector fields with hybrid states of polarization and their orbital angular momentum. Proceedings of SPIE, $2011, \ldots$	0.8	1
321	Spin-sensitive distribution of electromagnetic field via spin-orbit interaction in structured metamaterials. Journal of Applied Physics, 2012, 112, 013102.	2.5	1
322	Trajectory-based unveiling of the angular momentum of photons. Physical Review A, 2017, 95, .	2.5	1
323	Efficient numerical solution of excitation number conserving quantum systems. AIP Advances, 2017, 7, 085225.	1.3	1
324	Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer. Chinese Physics Letters, 2018, 35, 090303.	3.3	1

#	Article	IF	Citations
325	Multi-Path Ghost Imaging by Means of an Additional Time Correlation. Chinese Physics Letters, 2019, 36, 044205.	3.3	1
326	Identifying the Symmetry of an Object Based on Orbital Angular Momentum through a Few-Mode Fiber [*] . Chinese Physics Letters, 2019, 36, 124207.	3.3	1
327	Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating*. Chinese Physics B, 2020, 29, 014208.	1.4	1
328	Multifractal vector optical fields. Optics Express, 2019, 27, 20608.	3.4	1
329	Generation and Tunable Focal Shift of the Hybridly Polarized Vector Optical Fields with Parabolic Symmetry. Chinese Physics Letters, 2020, 37, 124201.	3. 3	1
330	Energy transfer of the tightly focused hybridly polarized vector optical fields with elliptic symmetry in free space. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 1898.	1.5	1
331	Pancharatnam–Berry geometric phase memory based on spontaneous parametric down-conversion. Optics Letters, 2020, 45, 682.	3.3	1
332	Configuring Polarization Singularity Array Composed of C-Point Pairs. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	1
333	Vector Fields and Their Novel Properties. , 2012, , .		0
334	Grating-assisted surface plasmons resonance in 2D microstructures induced by femtosecond vector fields. , 2013, , .		0
335	Trajectory-based unveiling of angular momentum of photons. , 2014, , .		0
336	CHAPTER 2: VECTOR OPTICAL FIELDS AND THEIR NOVEL EFFECTS., 2014,, 27-72.		0
337	Robust Ghost Imaging Based on Degenerate Spontaneous Parametric Down-Conversion. Chinese Physics Letters, 2017, 34, 054206.	3.3	0
338	Control the Collapse of Optical Fields by Anisotropic Media. , 2017, , .		0
339	Impact of the spatial coherence on self-interference digital holography*. Chinese Physics B, 2021, 30, 084212.	1.4	0
340	High-dimensional quantum cryptography based on multiplexing of polarized structured photons. , 2021, , .		0
341	Stronger Quantum Contextuality. , 2020, , .		0