Julio Cesar Madureira de Freitas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3386855/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-17 Triggers Invasive and Migratory Properties in Human MSCs, while IFNy Favors their Immunosuppressive Capabilities: Implications for the "Licensing―Process. Stem Cell Reviews and Reports, 2020, 16, 1266-1279.	1.7	5
2	Glycans as Immune Checkpoints: Removal of Branched N-glycans Enhances Immune Recognition Preventing Cancer Progression. Cancer Immunology Research, 2020, 8, 1407-1425.	1.6	33
3	N‑glycosylation and receptor tyrosine kinase signaling affect claudin‑3 levels in colorectal cancer cells. Oncology Reports, 2020, 44, 1649-1661.	1.2	7
4	Docosahexaenoic acid promotes cell cycle arrest and decreases proliferation through WNT/βâ€catenin modulation in colorectal cancer cells exposed to γâ€radiation. BioFactors, 2019, 45, 24-34.	2.6	10
5	Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cellular Immunology, 2018, 333, 46-57.	1.4	157
6	Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis, 2017, 6, e306-e306.	2.1	87
7	Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction. Tumor Biology, 2017, 39, 101042831769591.	0.8	30
8	Glycans as Regulatory Elements of the Insulin/IGF System: Impact in Cancer Progression. International Journal of Molecular Sciences, 2017, 18, 1921.	1.8	20
9	The role of <i>N-glycans</i> in colorectal cancer progression: potential biomarkers and therapeutic applications. Oncotarget, 2016, 7, 19395-19413.	0.8	61
10	EphA4-mediated signaling regulates the aggressive phenotype of irradiation survivor colorectal cancer cells. Tumor Biology, 2016, 37, 12411-12422.	0.8	26
11	Dual inhibition of histone deacetylases and phosphoinositide 3-kinases: effects on Burkitt lymphoma cell growth and migration. Journal of Leukocyte Biology, 2016, 99, 569-578.	1.5	8
12	Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction. Tumor Biology, 2016, 37, 5337-5346.	0.8	39
13	Progeny From Irradiated Colorectal Cancer Cells Acquire an EMTâ€ <i>Like</i> Phenotype and Activate Wnt/β atenin Pathway. Journal of Cellular Biochemistry, 2014, 115, 2175-2187.	1.2	47
14	Heme modulates intestinal epithelial cell activation: involvement of NADPHox-derived ROS signaling. American Journal of Physiology - Cell Physiology, 2013, 304, C170-C179.	2.1	27
15	Claudin-3 Overexpression Increases the Malignant Potential of Colorectal Cancer Cells: Roles of ERK1/2 and PI3K-Akt as Modulators of EGFR signaling. PLoS ONE, 2013, 8, e74994.	1.1	47
16	Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin. PLoS ONE, 2013, 8, e81579.	1.1	33
17	Blockade of irradiation-induced autophagosome formation impairs proliferation but does not enhance cell death in HCT-116 human colorectal carcinoma cells. International Journal of Oncology, 2012, 40, 1267-1276.	1.4	3
18	<i>N</i> â€glycan biosynthesis inhibitors induce in vitro anticancer activity in colorectal cancer cells. Journal of Cellular Biochemistry, 2012, 113, 2957-2966.	1.2	32

#	Article	IF	CITATIONS
19	Inhibition of N-linked glycosylation by tunicamycin induces E-cadherin-mediated cell–cell adhesion and inhibits cell proliferation in undifferentiated human colon cancer cells. Cancer Chemotherapy and Pharmacology, 2011, 68, 227-238.	1.1	61
20	PI3K/Akt and CSK-3β prevents in a differential fashion the malignant phenotype of colorectal cancer cells. Journal of Cancer Research and Clinical Oncology, 2010, 136, 1773-1782.	1.2	18
21	The effects of metronidazole and furazolidone during Giardia differentiation into cysts. Experimental Parasitology, 2006, 113, 135-141.	0.5	21