Eduardo Peña-Cabrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3386599/publications.pdf

Version: 2024-02-01

44 papers 2,632 citations

279798 23 h-index 243625 44 g-index

45 all docs

45 docs citations

45 times ranked

3123 citing authors

#	Article	IF	Citations
1	Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. Journal of Physical Chemistry C, 2009, 113, 15845-15853.	3.1	856
2	The Smallest and One of the Brightest. Efficient Preparation and Optical Description of the Parent Borondipyrromethene System. Journal of Organic Chemistry, 2009, 74, 5719-5722.	3.2	156
3	New 8â€Aminoâ€BODIPY Derivatives: Surpassing Laser Dyes at Blueâ€Edge Wavelengths. Chemistry - A European Journal, 2011, 17, 7261-7270.	3.3	141
4	Novel <i>meso</i> -Polyarylamine-BODIPY Hybrids: Synthesis and Study of Their Optical Properties. Journal of Organic Chemistry, 2009, 74, 2053-2058.	3.2	126
5	8-PropargylaminoBODIPY: unprecedented blue-emitting pyrromethene dye. Synthesis, photophysics and laser properties. Chemical Communications, 2010, 46, 5103.	4.1	121
6	Simple, General, and Efficient Synthesis of Meso-Substituted Borondipyrromethenes from a Single Platform. Organic Letters, 2007, 9, 3985-3988.	4.6	119
7	Development of background-free tame fluorescent probes for intracellular live cell imaging. Nature Communications, 2016, 7, 11964.	12.8	92
8	3- and 5-Functionalized BODIPYs via the Liebeskind-Srogl reaction. Organic and Biomolecular Chemistry, 2009, 7, 34-36.	2.8	87
9	8-AminoBODIPYs: Cyanines or Hemicyanines? The Effect of the Coplanarity of the Amino Group on Their Optical Properties. Journal of Organic Chemistry, 2012, 77, 5434-5438.	3.2	80
10	Modulation of singlet oxygen generation in halogenated BODIPY dyes by substitution at their meso position: towards a solvent-independent standard in the vis region. RSC Advances, 2016, 6, 41991-41998.	3.6	80
11	Modulation of the photophysical properties of BODIPY dyes by substitution at their meso position RSC Advances, 2011, 1, 677.	3.6	62
12	Blueâ€toâ€Orange Colorâ€Tunable Laser Emission from Tailored Boronâ€Dipyrromethene Dyes. ChemPhysChem, 2013, 14, 4134-4142.	2.1	59
13	8-Alkoxy- and 8-Aryloxy-BODIPYs: Straightforward Fluorescent Tagging of Alcohols and Phenols. Journal of Organic Chemistry, 2013, 78, 5867-5877.	3.2	55
14	8-Alkenylborondipyrromethene dyes. General synthesis, optical properties, and preliminary study of their reactivity. Tetrahedron, 2011, 67, 7244-7250.	1.9	53
15	8-Amino-BODIPYs: Structural Variation, Solvent-Dependent Emission, and VT NMR Spectroscopic Properties of 8-R ₂ N-BODIPY. Journal of Organic Chemistry, 2013, 78, 4245-4250.	3.2	52
16	Nearâ€IR BODIPY Dyes à la Carteâ€"Programmed Orthogonal Functionalization of Rationally Designed Building Blocks. Chemistry - A European Journal, 2016, 22, 1048-1061.	3.3	45
17	Reaction of Amines with 8â€MethylthioBODIPY: Dramatic Optical and Laser Response to Amine Substitution. Chemistry - an Asian Journal, 2013, 8, 2691-2700.	3.3	36
18	Scope and Limitations of the Liebeskind–Srogl Cross-Coupling Reactions Involving the Biellmann BODIPY. Journal of Organic Chemistry, 2015, 80, 5771-5782.	3.2	36

#	Article	IF	Citations
19	Synthetic Approach to Readily Accessible Benzofuran-Fused Borondipyrromethenes as Red-Emitting Laser Dyes. Journal of Organic Chemistry, 2019, 84, 2523-2541.	3.2	31
20	Selective Cross-Couplings. Sequential Stilleâ^'Liebeskind/Srogl Reactions of 3-Chloro-4-arylthiocyclobutene-1,2-dione. Organic Letters, 2007, 9, 4163-4166.	4.6	29
21	Synthesis, structural characterization, and spectroscopic properties of the <i>ortho</i> , <i>meta</i> , and <i>para</i> isomers of 8-(HOCH ₂ -C ₆ H ₄)-BODIPY and 8-(MeOC ₆ H ₄)-BODIPY. Journal of Physical Organic Chemistry, 2013, 26, 345-351.	1.9	29
22	FormylBODIPYs: Privileged Building Blocks for Multicomponent Reactions. The Case of the Passerini Reaction. Journal of Organic Chemistry, 2016, 81, 2888-2898.	3.2	28
23	A palette of background-free tame fluorescent probes for intracellular multi-color labelling in live cells. Chemical Science, 2018, 9, 2376-2383.	7.4	27
24	Convenient Access to Carbohydrate–BODIPY Hybrids by Two Complementary Methods Involving Oneâ€Pot Assembly of "Clickable―BODIPY Dyes. European Journal of Organic Chemistry, 2014, 2014, 5659-5663.	2.4	25
25	Straightforward Synthetic Protocol for the Introduction of Stabilized Câ€Nucleophiles in the BODIPY Core for Advanced Sensing and Photonic Applications. Chemistry - A European Journal, 2015, 21, 1755-1764.	3.3	22
26	Development of a Fluorescent Bodipy Probe for Visualization of the Serotonin 5-HT _{1A} Receptor in Native Cells of the Immune System. Bioconjugate Chemistry, 2018, 29, 2021-2027.	3.6	21
27	Unprecedented one-pot sequential thiolate substitutions under mild conditions leading to a red emissive BODIPY dye 3,5,8-tris(PhS)-BODIPY. Organic and Biomolecular Chemistry, 2015, 13, 995-999.	2.8	18
28	Fully Functionalizable β,β′-BODIPY Dimer: Synthesis, Structure, and Photophysical Signatures. Journal of Organic Chemistry, 2018, 83, 10186-10196.	3.2	17
29	Polyenals and Polyenones in Aminocatalysis: A Decade Building Complex Frameworks from Simple Blocks. European Journal of Organic Chemistry, 2020, 2020, 6044-6061.	2.4	17
30	BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions. Chemical Science, 2019, 10, 4346-4351.	7.4	16
31	Sulfone derivatives enter the cytoplasm of Candida albicans sessile cells. European Journal of Medicinal Chemistry, 2020, 191, 112139.	5.5	15
32	Mechanochemically Activated Liebeskind–Srogl (L-S) Cross-Coupling Reaction: Green Synthesis of meso-Substituted BODIPYs. Organometallics, 2020, 39, 2561-2564.	2.3	12
33	Synthesis, Properties, and Functionalization of Nonsymmetric 8â€MethylthioBODIPYs. European Journal of Organic Chemistry, 2016, 2016, 5009-5023.	2.4	11
34	Structure and Conformational Studies of Azaâ€Crown 8â€Aminoâ€BODIPY Derivatives: Influence of Steric Hindrance on Their Photophysical Properties. European Journal of Organic Chemistry, 2017, 2017, 6283-6290.	2.4	9
35	Synthesis, Photophysical Study, and Biological Application Analysis of Complex Borondipyrromethene Dyes. ACS Omega, 2018, 3, 7783-7797.	3.5	9
36	Concentration depending fluorescence of 8-(di-(2-picolyl))aminoBODIPY in solution. Tetrahedron, 2014, 70, 3735-3739.	1.9	7

#	Article	IF	CITATIONS
37	A versatile synthetic approach to design tailor-made push-pull chromophores with intriguing and tunable photophysical signatures. Dyes and Pigments, 2017, 147, 246-259.	3.7	7
38	Mechanochemistry as a Sustainable Method for the Preparation of Fluorescent Ugi BODIPY Adducts. European Journal of Organic Chemistry, 2021, 2021, 253-265.	2.4	7
39	Effect of the substituents of new coumarin-imidazo[1,2- <i>a</i>)]heterocyclic-3-acrylate derivatives on nonlinear optical properties: a combined experimental-theoretical approach. Physical Chemistry Chemical Physics, 2021, 23, 22466-22475.	2.8	5
40	A Palette of Efficient and Stable Far-Red and NIR Dye Lasers. Applied Sciences (Switzerland), 2020, 10, 6206.	2.5	4
41	Organocatalytic Cascade Reactions for the Diversification of Thiopyranoâ€Piperidone Fused Rings Utilizing Trienamine Activation. Chemistry - A European Journal, 2021, 27, 618-621.	3.3	4
42	Ready Access to Molecular Rotors Based on Boron Dipyrromethene Dyes-Coumarin Dyads Featuring Broadband Absorption. Molecules, 2020, 25, 781.	3.8	3
43	Alkynyl Fischer Carbenes as a Platform for the Production of Difluorodiazaborinine Complexes via βâ€Aminoâ€azadienes. European Journal of Organic Chemistry, 2019, 2019, 6571-6578.	2.4	2

Formation of 8-RS-BODIPYs via direct substitution of 8-MeS-BODIPY by RSH (R = Et, Pr, Bu, tBu, n-C12H25,) Tj ETQq0 0 rgBT /Overlock