Yu-Wen Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3385601/publications.pdf Version: 2024-02-01

VILWEN SU

#	Article	IF	CITATIONS
1	Adiposeâ€derived stem cells for wound healing. Journal of Cellular Physiology, 2019, 234, 7903-7914.	4.1	118
2	Hydrogen Sulfide Regulates Cardiac Function and Structure in Adriamycin-Induced Cardiomyopathy. Circulation Journal, 2009, 73, 741-749.	1.6	62
3	Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats. Journal of Bone and Mineral Research, 2016, 31, 1258-1274.	2.8	54
4	EGFL7 Is Expressed in Bone Microenvironment and Promotes Angiogenesis via ERK, STAT3, and Integrin Signaling Cascades. Journal of Cellular Physiology, 2015, 230, 82-94.	4.1	40
5	Roles of neurotrophins in skeletal tissue formation and healing. Journal of Cellular Physiology, 2018, 233, 2133-2145.	4.1	40
6	Bone marrow sinusoidal endothelium: damage and potential regeneration following cancer radiotherapy or chemotherapy. Angiogenesis, 2017, 20, 427-442.	7.2	38
7	Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1440-E1449.	3.5	35
8	Supplementation with Fish Oil and Genistein, Individually or in Combination, Protects Bone against the Adverse Effects of Methotrexate Chemotherapy in Rats. PLoS ONE, 2013, 8, e71592.	2.5	29
9	Critical limb ischemia: Current and novel therapeutic strategies. Journal of Cellular Physiology, 2019, 234, 14445-14459.	4.1	19
10	EffectsÂofÂResveratrolÂSupplementationÂon MethotrexateÂChemotherapyâ€InducedÂBoneÂLoss. Nutrients, 2017, 9, 255.	4.1	18
11	Determining Oxidative Damage by Lipid Peroxidation Assay in Rat Serum. Bio-protocol, 2019, 9, e3263.	0.4	18
12	Childhood cancer chemotherapy–induced bone damage: pathobiology and protective effects of resveratrol and other nutraceuticals. Annals of the New York Academy of Sciences, 2017, 1403, 109-117.	3.8	16
13	Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone, 2018, 116, 232-247.	2.9	15
14	Opioids and matrix metalloproteinases: the influence of morphine on MMP-9 production and cancer progression. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 123-133.	3.0	15
15	Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow. Critical Reviews in Oncology/Hematology, 2019, 137, 43-56.	4.4	14
16	Fish oil in comparison to folinic acid for protection against adverse effects of methotrexate chemotherapy on bone. Journal of Orthopaedic Research, 2014, 32, 587-596.	2.3	13
17	Methotrexate chemotherapy–induced damages in bone marrow sinusoids: An in vivo and in vitro study. Journal of Cellular Biochemistry, 2019, 120, 3220-3231.	2.6	13
18	Flavonoid genistein protects bone marrow sinusoidal blood vessels from damage by methotrexate therapy in rats. Journal of Cellular Physiology, 2019, 234, 11276-11286.	4.1	9

Yu-Wen Su

#	Article	IF	CITATIONS
19	lcariin attenuates methotrexate chemotherapyâ€induced bone marrow microvascular damage and bone loss in rats. Journal of Cellular Physiology, 2019, 234, 16549-16561.	4.1	7
20	Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Protects Against Adriamycin and Cyclophosphamide Chemotherapy-Induced Bone Marrow Damage in Female Rats. International Journal of Molecular Sciences, 2018, 19, 484.	4.1	6
21	Notch2 Blockade Mitigates Methotrexate Chemotherapy-Induced Bone Loss and Marrow Adiposity. Cells, 2022, 11, 1521.	4.1	6
22	Enhanced BMP signalling causes growth plate cartilage dysrepair in rats. Bone, 2021, 145, 115874.	2.9	5
23	Differentially expressed miRNAs in bone after methotrexate treatment. Journal of Cellular Physiology, 2021, , .	4.1	5
24	miR-542-3p Attenuates Bone Loss and Marrow Adiposity Following Methotrexate Treatment by Targeting sFRP-1 and Smurf2. International Journal of Molecular Sciences, 2021, 22, 10988.	4.1	5
25	βâ€Catenin signaling is important for osteogenesis and hematopoiesis recovery following methotrexate chemotherapy in rats. Journal of Cellular Physiology, 2021, 236, 3740-3751.	4.1	4
26	Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats. Journal of Cellular Biochemistry, 2019, 120, 4180-4191.	2.6	3
27	miR-6315 Attenuates Methotrexate Treatment-Induced Decreased Osteogenesis and Increased Adipogenesis Potentially through Modulating TGF-β/Smad2 Signalling. Biomedicines, 2021, 9, 1926.	3.2	3
28	Roles of apoptotic chondrocyteâ€derived CXCL12 in the enhanced chondroclast recruitment following methotrexate and/or dexamethasone treatment. Journal of Cellular Physiology, 2021, 236, 5966-5979.	4.1	2
29	Methotrexate treatment suppresses osteoblastic differentiation by inducing Notch2 signaling and blockade of Notch2 rescues osteogenesis by preserving Wnt/ β â€catenin signaling. Journal of Orthonoodic Research, 2021	2.3	2