List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3385517/publications.pdf Version: 2024-02-01

ΤΑΡΟ ΤΟΥΟΡΑ

#	Article	IF	CITATIONS
1	Exponential optical absorption edge in PbS quantum dot-ligand systems on single crystal rutile-TiO ₂ revealed by photoacoustic and absorbance spectroscopies. Materials Research Express, 2022, 9, 025005.	1.6	1
2	Relationship between perovsktie solar cell efficiency and lattice disordering. Japanese Journal of Applied Physics, 2021, 60, 035001.	1.5	0
3	Ultra-Halide-Rich Synthesis of Stable Pure Tin-Based Halide Perovskite Quantum Dots: Implications for Photovoltaics. ACS Applied Nano Materials, 2021, 4, 3958-3968.	5.0	9
4	Growth of Amorphous Passivation Layer Using Phenethylammonium Iodide for Highâ€Performance Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900243.	5.8	43
5	Trioctylphosphine Oxide Acts as Alkahest for SnX ₂ /PbX ₂ : A General Synthetic Route to Perovskite ASn _{<i>x</i>} Pb _{1–<i>x</i>} X ₃ (A = Cs, FA, MA; X =) 1	፲j ቬፒ ጲq1	1037184314
6	Hot-injection and ultrasonic irradiation syntheses of Cs2SnI6 quantum dot using Sn long-chain amino-complex. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	5
7	Nearâ€Infrared Emission from Tin–Lead (Sn–Pb) Alloyed Perovskite Quantum Dots by Sodium Doping. Angewandte Chemie, 2020, 132, 8499-8502.	2.0	10
8	Enhanced Device Performance with Passivation of the TiO ₂ Surface Using a Carboxylic Acid Fullerene Monolayer for a SnPb Perovskite Solar Cell with a Normal Planar Structure. ACS Applied Materials & Interfaces, 2020, 12, 17776-17782.	8.0	24
9	Nearâ€Infrared Emission from Tin–Lead (Sn–Pb) Alloyed Perovskite Quantum Dots by Sodium Doping. Angewandte Chemie - International Edition, 2020, 59, 8421-8424.	13.8	38
10	In-Depth Exploration of the Charge Dynamics in Surface-Passivated ZnO Nanowires. Journal of Physical Chemistry C, 2020, 124, 15812-15817.	3.1	6
11	Relationship between Lattice Strain and Efficiency for Sn-Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 31105-31110.	8.0	101
12	Suppression of Charge Carrier Recombination in Lead-Free Tin Halide Perovskite via Lewis Base Post-treatment. Journal of Physical Chemistry Letters, 2019, 10, 5277-5283.	4.6	196
13	Strain Relaxation and Light Management in Tin–Lead Perovskite Solar Cells to Achieve High Efficiencies. ACS Energy Letters, 2019, 4, 1991-1998.	17.4	114
14	The Effect of Transparent Conductive Oxide Substrate on the Efficiency of SnGe-perovskite Solar Cells. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 597-602.	0.3	5
15	The interparticle distance limit for multiple exciton dissociation in PbS quantum dot solid films. Nanoscale Horizons, 2019, 4, 445-451.	8.0	19
16	Pb-free Sn Perovskite Solar Cells Doped with Samarium Iodide. Chemistry Letters, 2019, 48, 836-839.	1.3	6
17	Improving Photovoltaic Performance of ZnO Nanowires Based Colloidal Quantum Dot Solar Cells via SnO2 Passivation Strategy. Frontiers in Energy Research, 2019, 7, .	2.3	19
18	Gel ₂ Additive for High Optoelectronic Quality CsPbl ₃ Quantum Dots and Their Application in Photovoltaic Devices. Chemistry of Materials, 2019, 31, 798-807.	6.7	112

#	Article	IF	CITATIONS
19	Surface Coatings for Improving Solar Cell Efficiencies. , 2019, , .		0
20	Ultrafast Electron Injection from Photoexcited Perovskite CsPbI ₃ QDs into TiO ₂ Nanoparticles with Injection Efficiency near 99%. Journal of Physical Chemistry Letters, 2018, 9, 294-297.	4.6	75
21	Highly Efficient 17.6% Tin–Lead Mixed Perovskite Solar Cells Realized through Spike Structure. Nano Letters, 2018, 18, 3600-3607.	9.1	114
22	Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot solar cells. Nanoscale Horizons, 2018, 3, 417-429.	8.0	50
23	Crystal Growth, Exponential Optical Absorption Edge, and Ground State Energy Level of PbS Quantum Dots Adsorbed on the (001), (110), and (111) Surfaces of Rutile-TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 13590-13599.	3.1	3
24	Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. ACS Applied Materials & Interfaces, 2018, 10, 26142-26152.	8.0	24
25	Growth Mechanism of ZnO Thin Films Grown by Spray Pyrolysis Using Diethylzinc Solution. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700406.	1.8	2
26	Anisotropic Crystal Growth, Optical Absorption, and Ground-State Energy Level of CdSe Quantum Dots Adsorbed on the (001) and (102) Surfaces of Anatase-TiO ₂ : Quantum Dot-Sensitization System. Journal of Physical Chemistry C, 2018, 122, 29200-29209.	3.1	3
27	Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO2 Solar Cells. Nanomaterials, 2018, 8, 460.	4.1	20
28	Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells. Nano Energy, 2018, 53, 17-26.	16.0	110
29	Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy. Journal of Physical Chemistry Letters, 2018, 9, 3598-3603.	4.6	38
30	Solutionâ€Processed Airâ€Stable Copper Bismuth Iodide for Photovoltaics. ChemSusChem, 2018, 11, 2930-2935.	6.8	39
31	Improvement of Photovoltaic Performance of Colloidal Quantum Dot Solar Cells Using Organic Small Molecule as Hole-Selective Layer. Journal of Physical Chemistry Letters, 2017, 8, 2163-2169.	4.6	35
32	Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells. Physical Chemistry Chemical Physics, 2017, 19, 6358-6367.	2.8	31
33	Investigation of Interfacial Charge Transfer in Solution Processed Cs ₂ SnI ₆ Thin Films. Journal of Physical Chemistry C, 2017, 121, 13092-13100.	3.1	66
34	Dependences of the Optical Absorption, Ground State Energy Level, and Interfacial Electron Transfer Dynamics on the Size of CdSe Quantum Dots Adsorbed on the (001), (110), and (111) Surfaces of Single Crystal Rutile TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 25390-25401.	3.1	6
35	Colloidal Synthesis of Air-Stable Alloyed CsSn _{1–<i>x</i>} Pb _{<i>x</i>} 1 ₃ Perovskite Nanocrystals for Use in Solar Cells. Journal of the American Chemical Society, 2017, 139, 16708-16719.	13.7	314
36	Slow hot carrier cooling in cesium lead iodide perovskites. Applied Physics Letters, 2017, 111, .	3.3	56

#	Article	IF	CITATIONS
37	Highly Luminescent Phase-Stable CsPbl ₃ Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano, 2017, 11, 10373-10383.	14.6	748
38	Air Stable PbSe Colloidal Quantum Dot Heterojunction Solar Cells: Ligand-Dependent Exciton Dissociation, Recombination, Photovoltaic Property, and Stability. Journal of Physical Chemistry C, 2016, 120, 28509-28518.	3.1	45
39	The effect of CdS on the charge separation and recombination dynamics in PbS/CdS double-layered quantum dot sensitized solar cells. Chemical Physics, 2016, 478, 159-163.	1.9	10
40	Architecture of the Interface between the Perovskite and Holeâ€Transport Layers in Perovskite Solar Cells. ChemSusChem, 2016, 9, 2634-2639.	6.8	27
41	Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route. Chemistry of Materials, 2016, 28, 6436-6440.	6.7	87
42	Adsorption and Electronic Structure of CdSe Quantum Dots on Single Crystal ZnO: A Basic Study of Quantum Dot-Sensitization System. Journal of Physical Chemistry C, 2016, 120, 16367-16376.	3.1	11
43	The Electronic Structure and Photoinduced Electron Transfer Rate of CdSe Quantum Dots on Single Crystal Rutile TiO ₂ : Dependence on the Crystal Orientation of the Substrate. Journal of Physical Chemistry C, 2016, 120, 2047-2057.	3.1	22
44	High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation. Nanoscale, 2015, 7, 5446-5456.	5.6	82
45	Effect of defects in TiO2 nanotube thin film on the photovoltaic properties of quantum dot-sensitized solar cells. Thin Solid Films, 2015, 590, 90-97.	1.8	10
46	Electronic structures of two types of TiO ₂ electrodes: inverse opal and nanoparticulate cases. RSC Advances, 2015, 5, 49623-49632.	3.6	26
47	Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 9308-9316.	10.3	85
48	The cause for the low efficiency of dye sensitized solar cells with a combination of ruthenium dyes and cobalt redox. Physical Chemistry Chemical Physics, 2015, 17, 10170-10175.	2.8	24
49	Uncovering the charge transfer and recombination mechanism in ZnS-coated PbS quantum dot sensitized solar cells. Solar Energy, 2015, 122, 307-313.	6.1	19
50	Characterization of hot carrier cooling and multiple exciton generation dynamics in PbS QDs using an improved transient grating technique. Journal of Energy Chemistry, 2015, 24, 712-716.	12.9	9
51	All-Solid Perovskite Solar Cells with HOCO-R-NH ₃ ⁺ I [–] Anchor-Group Inserted between Porous Titania and Perovskite. Journal of Physical Chemistry C, 2014, 118, 16651-16659.	3.1	191
52	Effect of electrolyte constituents on the motion of ionic species and recombination kinetics in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 5242.	2.8	17
53	Ex Situ CdSe Quantum Dot-Sensitized Solar Cells Employing Inorganic Ligand Exchange To Boost Efficiency. Journal of Physical Chemistry C, 2014, 118, 214-222.	3.1	44
54	Photoacoustic spectroscopy of TiO ₂ nanotube electrode adsorbed with CdSe quantum dots and its photovoltaic properties. Japanese Journal of Applied Physics, 2014, 53, 07KB08.	1.5	3

TARO TOYODA

#	Article	IF	CITATIONS
55	Role of lithium and co-existing cations in electrolyte to improve performance of dye-sensitized solar cells. RSC Advances, 2014, 4, 21517-21520.	3.6	14
56	Effect of TiO2 Crystal Orientation on the Adsorption of CdSe Quantum Dots for Photosensitization Studied by the Photoacoustic and Photoelectron Yield Methods. Journal of Physical Chemistry C, 2014, 118, 16680-16687.	3.1	10
57	Multiple exciton generation in cluster-free alloy Cd _x Hg _{1â^'x} Te colloidal quantum dots synthesized in water. Physical Chemistry Chemical Physics, 2014, 16, 25710-25722.	2.8	22
58	Charge transfer and recombination at the metal oxide/CH ₃ NH ₃ PbCll ₂ /spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells. Physical Chemistry Chemical Physics, 2014, 16, 19984-19992.	2.8	88
59	CH ₃ NH ₃ Sn _{<i>x</i>} Pb _(1–<i>x</i>) I ₃ Perovskite Solar Cells Covering up to 1060 nm. Journal of Physical Chemistry Letters, 2014, 5, 1004-1011.	4.6	852
60	The Dynamics of Multiple Exciton Generation in Semiconductor Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2014, , 295-310.	0.8	3
61	Huge suppression of charge recombination in P3HT–ZnO organic–inorganic hybrid solar cells by locating dyes at the ZnO/P3HT interfaces. Physical Chemistry Chemical Physics, 2013, 15, 14370.	2.8	33
62	Detection of non-absorbing charge dynamics via refractive index change in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 5975.	2.8	20
63	Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulfide based ionic liquid for enhanced long term stability. Electrochimica Acta, 2013, 100, 35-43.	5.2	20
64	Carrier dynamics in quantum-dot sensitized solar cells measured by transient grating and transient absorption methods. Physical Chemistry Chemical Physics, 2013, 15, 11006.	2.8	18
65	Optical absorption of CdSe quantum dots on electrodes with different morphology. AIP Advances, 2013, 3, 102115.	1.3	12
66	Characterization of Photoexcited Carriers and Thermal Properties of Nanoparticulate TiO ₂ Film Using Heterodyne Transient Grating Method. Japanese Journal of Applied Physics, 2012, 51, 042601.	1.5	6
67	Effect of ZnS coatings on the enhancement of the photovoltaic properties of PbS quantum dot-sensitized solar cells. Journal of Applied Physics, 2012, 111, .	2.5	66
68	Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 4605.	2.8	35
69	Quantum-Dot-Sensitized Solar Cells: Effect of Nanostructured TiO ₂ Morphologies on Photovoltaic Properties. Journal of Physical Chemistry Letters, 2012, 3, 1885-1893.	4.6	101
70	Ultrafast carrier dynamics in PbS quantum dots. Chemical Physics Letters, 2012, 542, 89-93.	2.6	26
71	Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons. Applied Surface Science, 2012, 263, 230-235.	6.1	1
72	Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochimica Acta, 2012, 75, 139-147.	5.2	62

#	Article	IF	CITATIONS
73	Characterization of Photoexcited Carriers and Thermal Properties of Nanoparticulate TiO ₂ Film Using Heterodyne Transient Grating Method. Japanese Journal of Applied Physics, 2012, 51, 042601.	1.5	6
74	Semiconductor Quantum Dot-Sensitized Solar Cells Employing TiO2 Nanostructured Photoanodes with Different Morphologies. , 2012, , 317-349.		0
75	Dependences of the optical absorption and photovoltaic properties of CdS quantum dot-sensitized solar cells on the CdS quantum dot adsorption time. Journal of Applied Physics, 2011, 110, .	2.5	25
76	Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 12024.	2.8	217
77	Multiple electron injection from dyes to titania layer for high efficiency-dye-sensitized solar cells. , 2011, , .		0
78	Direct Correlation between Ultrafast Injection and Photoanode Performance in Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22352-22360.	3.1	97
79	CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode. Applied Physics Letters, 2010, 97, .	3.3	118
80	Sensitization of Titanium Dioxide Photoanodes with Cadmium Selenide Quantum Dots Prepared by SILAR: Photoelectrochemical and Carrier Dynamics Studies. Journal of Physical Chemistry C, 2010, 114, 21928-21937.	3.1	120
81	Separation of ultrafast photoexcited electron and hole dynamics in CdSe quantum dots adsorbed onto nanostructured TiO2 films. Applied Physics Letters, 2010, 97, .	3.3	30
82	Photoacoustic and photoelectrochemical current spectra of combined CdS/CdSe quantum dots adsorbed on nanostructured TiO2 electrodes, together with photovoltaic characteristics. Journal of Applied Physics, 2010, 108, .	2.5	39
83	Electron dynamics in GaN wafers with an inhomogeneous distribution of defects in the depth direction. Journal of Applied Physics, 2009, 106, .	2.5	4
84	Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics. Journal of Applied Physics, 2009, 105, .	2.5	29
85	Recombination in Quantum Dot Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1848-1857.	15.6	747
86	Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	2.6	383
87	Terahertz reflection response measurement using a phonon polariton wave. Journal of Applied Physics, 2009, 105, 054902.	2.5	11
88	Correlation between crystal growth and photosensitization of nanostructured TiO2 electrodes using supporting Ti substrates by self-assembled CdSe quantum dots. Thin Solid Films, 2008, 516, 2426-2431.	1.8	9
89	Photoacoustic spectra on Mn-doped zinc silicate powders by evacuated sealed silica tube method. Journal of Materials Science, 2008, 43, 378-383.	3.7	9
90	Characterization of electron transfer from CdSe quantum dots to nanostructured TiO2 electrode using a near-field heterodyne transient grating technique. Thin Solid Films, 2008, 516, 5927-5930.	1.8	68

#	Article	IF	CITATIONS
91	Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. Journal of Applied Physics, 2008, 103, .	2.5	369
92	Crystal Growth of CdSe Quantum Dots Adsorbed on Nanoparticle, Inverse Opal, and Nanotube TiO ₂ Photoelectrodes Characterized by Photoacoustic Spectroscopy. Japanese Journal of Applied Physics, 2007, 46, 4616.	1.5	22
93	High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Applied Physics Letters, 2007, 91, .	3.3	442
94	Optical absorption, photosensitization, and ultrafast carrier dynamic investigations of CdSe quantum dots grafted onto nanostructured SnO2 electrode and fluorine-doped tin oxide (FTO) glass. Chemical Physics Letters, 2007, 442, 89-96.	2.6	51
95	Optical absorption and ultrafast carrier dynamics characterization of CdSe quantum dots deposited on different morphologies of nanostructured TiO2 films. Materials Science and Engineering C, 2007, 27, 1514-1520.	7.3	37
96	Photoacoustic and Photoelectrochemical Characterization of Inverse Opal TiO2Sensitized with CdSe Quantum Dots. Japanese Journal of Applied Physics, 2006, 45, 5563-5568.	1.5	41
97	Photoexcited hole dynamics in TiO2 nanocrystalline films characterized using a lens-free heterodyne detection transient grating technique. Chemical Physics Letters, 2006, 419, 464-468.	2.6	53
98	Carrier dynamics in porous silicon studied with a near-field heterodyne transient grating method. Chemical Physics Letters, 2006, 427, 192-196.	2.6	8
99	Photoacoustic and photoelectrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires. Thin Solid Films, 2006, 499, 299-305.	1.8	88
100	The effect of ultraviolet irradiation on the photothermal, photoluminescence and photoluminescence excitation spectra of Mn-doped ZnS nanoparticles. Thin Solid Films, 2006, 499, 104-109.	1.8	18
101	The influence of chemical post-etching and UV irradiation on the optical absorption and thermal diffusivity of porous silicon studied by photoacoustic technique. Thin Solid Films, 2006, 499, 161-167.	1.8	6
102	Optical Absorption, Photoelectrochemical, and Ultrafast Carrier Dynamic Investigations of TiO2Electrodes Composed of Nanotubes and Nanowires Sensitized with CdSe Quantum Dots. Japanese Journal of Applied Physics, 2006, 45, 5569-5574.	1.5	51
103	Effect of rutile-type content on nanostructured anatase-type TiO2 electrode sensitized with CdSe quantum dots characterized with photoacoustic and photoelectrochemical current spectroscopies. Materials Science and Engineering C, 2005, 25, 853-857.	7.3	10
104	Studies on the effect of UV irradiation on Mn-doped ZnS nanoparticles. Materials Science and Engineering C, 2005, 25, 761-765.	7.3	30
105	Study of ultrafast carrier dynamics of nanostructured TiO2 films with and without CdSe quantum dot deposition using lens-free heterodyne detection transient grating technique. Thin Solid Films, 2005, 486, 15-19.	1.8	45
106	Photoacoustic and Photoluminescence Characterization of Passivated and Unpassivated Mn-Doped ZnS Nanoparticles. Japanese Journal of Applied Physics, 2005, 44, 4354-4357.	1.5	6
107	Photoacoustic and Photoelectrochemical Characterization of CdSe Quantum Dots Grafted onto Fluorine-Doped Tin Oxide (FTO) Substrate. Japanese Journal of Applied Physics, 2005, 44, 4465-4468.	1.5	11
108	Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 75-80.	3.9	130

TARO TOYODA

#	Article	IF	CITATIONS
109	Characterization of Nanostructured TiO2Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods. Japanese Journal of Applied Physics, 2004, 43, 2946-2951.	1.5	67
110	Apparent band-gap energies of mixed TiO2 nanocrystals with anatase and rutile structures characterized with photoacoustic spectroscopy. Review of Scientific Instruments, 2003, 74, 782-784.	1.3	34
111	Studies of optical absorption and electron transport in nanocrystalline TiO2 electrodes. Thin Solid Films, 2003, 438-439, 167-170.	1.8	50
112	Dependence of thermal conductivity of porous silicon on porosity characterized by photoacoustic technique. Review of Scientific Instruments, 2003, 74, 601-603.	1.3	39
113	Effect of voltage treatment applied on photoacoustic and photoelectrochemical current spectra in final preparation processes of porous TiO2 electrodes. Review of Scientific Instruments, 2003, 74, 337-339.	1.3	1
114	Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes. Review of Scientific Instruments, 2003, 74, 297-299.	1.3	45
115	Photoacoustic and Photoelectrochemical Current Response of Nanostructured TiO2Electrodes. Japanese Journal of Applied Physics, 2003, 42, 3036-3040.	1.5	14
116	Exposure time dependence of the photoacoustic and photoluminescence intensities of porous silicon with different wavelengths of excitation light. Review of Scientific Instruments, 2003, 74, 869-871.	1.3	1
117	Photoacoustic and Photoelectrochemical Current Spectra of Highly Porous, Polycrystalline TiO2Films Fabricated with Different Applied Voltage Treatments. Japanese Journal of Applied Physics, 2002, 41, 3367-3370.	1.5	9
118	Effect of Voltage Treatment on Modulation Frequency Dependence of the Photoacoustic and Photoelectrochemical Current Spectra of Highly Porous, Polycrystalline TiO2Electrodes. Japanese Journal of Applied Physics, 2001, 40, 3583-3586.	1.5	7
119	Photoacoustic Spectra of Mixed TiO2Ultrafine Powders with Rutile and Anatase Structures. Japanese Journal of Applied Physics, 2001, 40, 3587-3590.	1.5	19
120	Dependence of the Photoacoustic Signal Intensity on Modulation Frequency for CdInGaS4Crystals under a Transmission Detection Configuration. Japanese Journal of Applied Physics, 2000, 39, 511-512.	1.5	10
121	Photoacoustic and Photocurrent Studies of Highly Porous TiO2Electrodes Sensitized by Quantum-Sized CdS. Japanese Journal of Applied Physics, 1999, 38, 3185-3186.	1.5	26
122	Photoacoustic Spectroscopy of Polyaniline Films. Japanese Journal of Applied Physics, 1995, 34, 2907-2910.	1.5	11
123	Hard xâ€ray absorption spectroscopy of CuO and Cu2O with a photoacoustic detector. Applied Physics Letters, 1991, 59, 3657-3659.	3.3	8
124	Photoacoustic Response to X-Ray Absorption in Copper and Brass. Japanese Journal of Applied Physics, 1990, 29, L1723-L1726.	1.5	10
125	Introduction of "spike-like" conduction band of TiO2 compact layer for perovskite solar cells. , 0, , .		0