
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3384122/publications.pdf Version: 2024-02-01

7ESHENC AN

#	Article	IF	CITATIONS
1	Enzyme Catalysis for Reversible Deactivation Radical Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
2	Enzyme Catalysis for Reversible Deactivation Radical Polymerization. Angewandte Chemie, 2022, 134, .	2.0	6
3	Heterogeneous photocatalytic reversible deactivation radical polymerization. Polymer Chemistry, 2021, 12, 2357-2373.	3.9	32
4	General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles. Advanced Materials, 2021, 33, e2100820.	21.0	30
5	Polymers via Reversible Addition–Fragmentation Chain Transfer Polymerization with High Thiol End-Group Fidelity for Effective Grafting-To Gold Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 4713-4721.	4.6	8
6	Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1138-1145.	3.8	13
7	<scp>Polymerizationâ€Induced Selfâ€Assembly</scp> for the Preparation of Poly(<i>N</i> , <i>N</i> â€dimethylacrylamide)â€ <scp><i>b</i>â€Poly</scp> (4â€ <i>tert</i> â€butoxystyreneâ€ <i Particles with Inverse Bicontinuous Phases^{â€}. Chinese Journal of Chemistry, 2021, 39, 1819-1824.</i 	>co∢/i>â€ 4.9	pentafluoro 11
8	Efficient Access to Inverse Bicontinuous Mesophases via Polymerization-Induced Cooperative Assembly. CCS Chemistry, 2021, 3, 2211-2222.	7.8	55
9	Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly. Chinese Journal of Polymer Science (English) Tj ETQq1	1 03.788431	l4 ıg BT /Ove
10	What Determines the Formation of Block Copolymer Nanotubes?. Macromolecules, 2020, 53, 367-373.	4.8	39
11	Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygenâ€Tolerant Photoenzymatic RAFT Polymerization. Angewandte Chemie, 2020, 132, 22442-22448.	2.0	7
12	Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygenâ€Tolerant Photoenzymatic RAFT Polymerization. Angewandte Chemie - International Edition, 2020, 59, 22258-22264.	13.8	44
13	Polymerizationâ€Induced Selfâ€Assembly for the Synthesis of Poly(<i>N</i> , <i>N</i> â€dimethylacrylamide)â€ <i>b</i> â€Poly(4â€ <i>tert</i> â€butoxystyrene) Particles with Inverse Bicontinuous Phases. Macromolecular Rapid Communications, 2020, 41, e2000209.	3.9	13
14	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
15	100th Anniversary of Macromolecular Science Viewpoint: Achieving Ultrahigh Molecular Weights with Reversible Deactivation Radical Polymerization. ACS Macro Letters, 2020, 9, 350-357.	4.8	52
16	Polymer Research at the State Key Laboratory of Supramolecular Structure and Materials, Jilin University. Macromolecular Rapid Communications, 2020, 41, e2000630.	3.9	0
17	New Insights into RAFT Dispersion Polymerizationâ€Induced Selfâ€Assembly: From Monomer Library, Morphological Control, and Stability to Driving Forces. Macromolecular Rapid Communications, 2019, 40, e1800325.	3.9	171
18	Enzyme-initiated reversible addition â^' fragmentation chain transfer (RAFT) polymerization: Precision polymer synthesis via enzymatic catalysis. Methods in Enzymology, 2019, 627, 291-319.	1.0	5

#	Article	IF	CITATIONS
19	Visible light induced aqueous RAFT polymerization using a supramolecular perylene diimide/cucurbit[7]uril complex. Polymer Chemistry, 2019, 10, 2801-2811.	3.9	25
20	Nonâ€natural Photoenzymatic Controlled Radical Polymerization Inspired by DNA Photolyase. Angewandte Chemie - International Edition, 2019, 58, 9479-9484.	13.8	57
21	Nonâ€natural Photoenzymatic Controlled Radical Polymerization Inspired by DNA Photolyase. Angewandte Chemie, 2019, 131, 9579-9584.	2.0	13
22	Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nature Communications, 2019, 10, 1397.	12.8	141
23	RAFT Polymerization-Induced Self-Assembly as a Strategy for Versatile Synthesis of Semifluorinated Liquid-Crystalline Block Copolymer Nanoobjects. ACS Macro Letters, 2018, 7, 287-292.	4.8	63
24	Synthesis of poly(ionic liquid)-based nano-objects with morphological transitions <i>via</i> RAFT polymerization-induced self-assembly in ethanol. Polymer Chemistry, 2018, 9, 824-827.	3.9	29
25	Morphological Stabilization of Block Copolymer Worms Using Asymmetric Cross-Linkers during Polymerization-Induced Self-Assembly. Macromolecules, 2018, 51, 2776-2784.	4.8	56
26	One-Enzyme Triple Catalysis: Employing the Promiscuity of Horseradish Peroxidase for Synthesis and Functionalization of Well-Defined Polymers. ACS Macro Letters, 2018, 7, 1-6.	4.8	37
27	Alkyl α-Hydroxymethyl Acrylate Monomers for Aqueous Dispersion Polymerization-Induced Self-Assembly. ACS Macro Letters, 2018, 7, 1461-1467.	4.8	32
28	Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Progress in Polymer Science, 2018, 83, 1-27.	24.7	111
29	Hydrogen bonding reinforcement as a strategy to improve upper critical solution temperature of poly(<i>N</i> -acryloylglycinamide- <i>co</i> -methacrylic acid). Polymer Chemistry, 2018, 9, 3667-3673.	3.9	14
30	Modular Monomers with Tunable Solubility: Synthesis of Highly Incompatible Block Copolymer Nano-Objects via RAFT Aqueous Dispersion Polymerization. ACS Macro Letters, 2017, 6, 224-228.	4.8	61
31	Polymerization-Induced Cooperative Assembly of Block Copolymer and Homopolymer via RAFT Dispersion Polymerization. ACS Macro Letters, 2017, 6, 304-309.	4.8	41
32	Switching between Polymer Architectures with Distinct Thermoresponses. Macromolecular Rapid Communications, 2017, 38, 1600808.	3.9	5
33	UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(<i>N</i> -acryloylglycinamide- <i>co</i> -diacetone acrylamide). Macromolecules, 2017, 50, 2175-2182.	4.8	69
34	In Situ Cross-Linking as a Platform for the Synthesis of Triblock Copolymer Vesicles with Diverse Surface Chemistry and Enhanced Stability via RAFT Dispersion Polymerization. Macromolecules, 2017, 50, 2165-2174.	4.8	56
35	Photocontrolled RAFT Polymerization Mediated by a Supramolecular Catalyst. ACS Macro Letters, 2017, 6, 625-631.	4.8	69
36	Star Architecture Promoting Morphological Transitions during Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 337-342.	4.8	99

#	Article	IF	CITATIONS
37	Revealing the distinct thermal transition behavior between PEGA-based linear polymers and their disulfide cross-linked nanogels. Physical Chemistry Chemical Physics, 2017, 19, 25746-25753.	2.8	6
38	Temperature-Induced Morphological Transitions of Poly(dimethylacrylamide)–Poly(diacetone) Tj ETQq0 0 0 rgB Macromolecules, 2017, 50, 7222-7232.	T /Overloc 4.8	k 10 Tf 50 7 67
39	Enzymatic Cascade Catalysis for the Synthesis of Multiblock and Ultrahighâ€Molecularâ€Weight Polymers with Oxygen Tolerance. Angewandte Chemie, 2017, 129, 14040-14044.	2.0	44
40	Enzymatic Cascade Catalysis for the Synthesis of Multiblock and Ultrahighâ€Molecularâ€Weight Polymers with Oxygen Tolerance. Angewandte Chemie - International Edition, 2017, 56, 13852-13856.	13.8	121
41	Synthesis of star polymeric ionic liquids and use as the stabilizers for high internal phase emulsions. Chinese Journal of Polymer Science (English Edition), 2017, 35, 54-65.	3.8	10
42	Glucose oxidase deoxygenationâ^'redox initiation for RAFT polymerization in air. Journal of Polymer Science Part A, 2017, 55, 164-174.	2.3	83
43	Raft polymerization of <i>N,N</i> -dimethylacrylamide from magnetic poly(2-hydroxyethyl) Tj ETQq1 1 0.784314 rg Part A, 2016, 54, 1036-1043.	gBT /Overl 2.3	ock 10 Tf 50 10
44	Formation of Multidomain Hydrogels via Thermally Induced Assembly of PISA-Generated Triblock Terpolymer Nanogels. Macromolecules, 2016, 49, 3038-3048.	4.8	44
45	Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers. Macromolecular Rapid Communications, 2016, 37, 1593-1597.	3.9	15
46	Macromol. Rapid Commun. 19/2016. Macromolecular Rapid Communications, 2016, 37, 1632-1632.	3.9	2
47	Exploration of Doubly Thermal Phase Transition Process of PDEGA- <i>b</i> -PDMA- <i>b</i> -PVCL in Water. Langmuir, 2016, 32, 6691-6700.	3.5	17
48	Star Polymers. Chemical Reviews, 2016, 116, 6743-6836.	47.7	653
49	Understanding the thermosensitivity of POEGA-based star polymers: LCST-type transition in water vs. UCST-type transition in ethanol. Soft Matter, 2016, 12, 2473-2480.	2.7	21
50	In Situ Cross-Linking of Vesicles in Polymerization-Induced Self-Assembly. ACS Macro Letters, 2016, 5, 316-320.	4.8	92
51	RAFT Synthesis in Water of Cationic Polyelectrolytes with Tunable UCST. Macromolecular Rapid Communications, 2015, 36, 2107-2110.	3.9	20
52	Aqueous Polymerization-Induced Self-Assembly for the Synthesis of Ketone-Functionalized Nano-Objects with Low Polydispersity. ACS Macro Letters, 2015, 4, 495-499.	4.8	184
53	Templateless Synthesis of Polyacrylamide-Based Nanogels via RAFT Dispersion Polymerization. Macromolecular Rapid Communications, 2015, 36, 566-570.	3.9	22
54	Boronic Acid Linear Homopolymers as Effective Emulsifiers and Gelators. ACS Applied Materials & Interfaces, 2015, 7, 21668-21672.	8.0	25

#	Article	IF	CITATIONS
55	Enzyme-Initiated Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecules, 2015, 48, 7792-7802.	4.8	133
56	Frontiers in the design and synthesis of advanced nanogels for nanomedicine. Polymer Chemistry, 2014, 5, 1559-1565.	3.9	40
57	pHâ€Induced Inversion of Waterâ€inâ€Oil Emulsions to Oilâ€inâ€Water High Internal Phase Emulsions (HIPEs) Using Core Crossâ€Linked Star (CCS) Polymer as Interfacial Stabilizer. Macromolecular Rapid Communications, 2014, 35, 1148-1152.	3.9	30
58	Single Monomer for Multiple Tasks: Polymerization Induced Self-Assembly, Functionalization and Cross-Linking, and Nanoparticle Loading. ACS Macro Letters, 2014, 3, 1220-1224.	4.8	120
59	Versatile RAFT dispersion polymerization in cononsolvents for the synthesis of thermoresponsive nanogels with controlled composition, functionality and architecture. Polymer Chemistry, 2014, 5, 6244-6255.	3.9	48
60	Enhanced thermal stability of oleic-acid-capped PbS quantum dot optical fiber amplifier. Optics Express, 2014, 22, 519.	3.4	19
61	A highly efficient macromonomer approach to core cross-linked star (CCS) polymers via one-step RAFT emulsion polymerization. Polymer Chemistry, 2014, 5, 4277.	3.9	26
62	Core cross-linked star (CCS) polymers with temperature and salt dual responsiveness: synthesis, formation of high internal phase emulsions (HIPEs) and triggered demulsification. Polymer Chemistry, 2014, 5, 175-185.	3.9	56
63	Exploring the Volume Phase Transition Behavior of POEGA- and PNIPAM-Based Core–Shell Nanogels from Infrared-Spectral Insights. Macromolecules, 2014, 47, 1144-1154.	4.8	75
64	Emerging Synthetic Strategies for Core Crossâ€Linked Star (CCS) Polymers and Applications as Interfacial Stabilizers: Bridging Linear Polymers and Nanoparticles. Macromolecular Rapid Communications, 2013, 34, 1507-1517.	3.9	48
65	Nanoprecipitation of PMMA Stabilized by Core Cross‣inked Star Polymers. Macromolecular Chemistry and Physics, 2013, 214, 1158-1164.	2.2	10
66	RAFT emulsion polymerization of styrene mediated by core cross-linked star (CCS) polymers. Polymer Chemistry, 2013, 4, 1921.	3.9	26
67	Core cross-linked star (CCS) polymers with tunable polarity: synthesis by RAFT dispersion polymerization, self-assembly and emulsification. Polymer Chemistry, 2013, 4, 1950.	3.9	38
68	pH-responsive high internal phase emulsions stabilized by core cross-linked star (CCS) polymers. Polymer Chemistry, 2013, 4, 4092.	3.9	66
69	Optical fiber amplifiers based on PbS/CdS QDs modified by polymers. Optics Express, 2013, 21, 8214.	3.4	27
70	Ultra-broadband multi-sized PbS quantum dots fiber amplifier based on a symmetric fiber coupler. , 2013, , .		0
71	One-pot RAFT synthesis of core cross-linked star polymers of polyPEGMA in water by sequential homogeneous and heterogeneous polymerizations. Polymer Chemistry, 2012, 3, 2656.	3.9	37
72	Amphiphilic heteroarm star polymer synthesized by RAFT dispersion polymerization in water/ethanol solution. Chemical Communications, 2012, 48, 7389.	4.1	42

#	Article	IF	CITATIONS
73	Development of thermosensitive copolymers of poly(2-methoxyethyl acrylate-co-poly(ethylene glycol)) Tj ETQq1 Polymer Chemistry, 2012, 3, 504-513.	1 0.78431 3.9	4 rgBT /Ove 112
74	Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications. Chemical Communications, 2011, 47, 12424.	4.1	72
75	Biocompatible, Antifouling, and Thermosensitive Coreâ^'Shell Nanogels Synthesized by RAFT Aqueous Dispersion Polymerization. Macromolecules, 2011, 44, 2524-2530.	4.8	203
76	Aqueous Dispersion Polymerization of 2-Methoxyethyl Acrylate for the Synthesis of Biocompatible Nanoparticles Using a Hydrophilic RAFT Polymer and a Redox Initiator. Macromolecules, 2011, 44, 5237-5245.	4.8	181
77	Efficient and versatile synthesis of star polymers in water and their use as emulsifiers. Chemical Communications, 2011, 47, 12685.	4.1	73
78	Thermosensitive, biocompatible and antifouling nanogels prepared via aqueous raft dispersion polymerization for targeted drug delivery. Journal of Controlled Release, 2011, 152, e75-e76.	9.9	6
79	Hydrazine as a Nucleophile and Antioxidant for Fast Aminolysis of RAFT Polymers in Air. Macromolecular Rapid Communications, 2010, 31, 1444-1448.	3.9	90
80	Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. Journal of Materials Chemistry, 2009, 19, 5794.	6.7	165
81	Synthesis and Photophysical Properties of Donor- and Acceptor-Substituted 1,7-Bis(arylalkynyl)perylene-3,4:9,10-bis(dicarboximide)s. Journal of Physical Chemistry A, 2009, 113, 5585-5593.	2.5	82
82	Charge photogeneration in polythiophene–perylene diimide blend films. Chemical Communications, 2009, , 5445.	4.1	64
83	Room-temperature discotic liquid-crystalline coronene diimides exhibiting high charge-carrier mobility in air. Journal of Materials Chemistry, 2009, 19, 6688.	6.7	107
84	Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties. Journal of Materials Chemistry, 2008, 18, 3157.	6.7	41
85	Heterofunctional polymers and core–shell nanoparticles via cascade aminolysis/Michael addition and alkyne–azide click reaction of RAFT polymers. Chemical Communications, 2008, , 6501.	4.1	55
86	Inter versus intra-molecular photoinduced charge separation in solid films of donor–acceptor molecules. Chemical Communications, 2008, , 4915.	4.1	11
87	Nonlinear optical properties of conjugated polymer charge transfer composites. , 2008, , .		0
88	High electron mobility in nickel bis(dithiolene) complexes. Journal of Materials Chemistry, 2007, 17, 2642.	6.7	61
89	Facile RAFT Precipitation Polymerization for the Microwave-Assisted Synthesis of Well-Defined, Double Hydrophilic Block Copolymers and Nanostructured Hydrogels. Journal of the American Chemical Society, 2007, 129, 14493-14499.	13.7	318
90	A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells. Journal of the American Chemical Society, 2007, 129, 7246-7247.	13.7	1,110

#	Article	IF	CITATIONS
91	lceâ€Templating of Core/Shell Microgel Fibers through †Bricksâ€andâ€Mortar' Assembly**. Advanced Materials, 2007, 19, 4539-4543.	21.0	59
92	One-Step Microwave Preparation of Well-Defined and Functionalized Polymeric Nanoparticles. Journal of the American Chemical Society, 2006, 128, 15054-15055.	13.7	66
93	High Electron Mobility in Room-Temperature Discotic Liquid-Crystalline Perylene Diimides. Advanced Materials, 2005, 17, 2580-2583.	21.0	300
94	A Fluorine-Substituted Hexakisdecyloxy- hexa-peri-hexabenzocoronene. Organic Letters, 2005, 7, 5019-5022.	4.6	36