List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3383379/publications.pdf Version: 2024-02-01

XINHUA ZHONC

#	Article	IF	CITATIONS
1	Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. Journal of the American Chemical Society, 2003, 125, 13559-13563.	6.6	657
2	High-Efficiency "Green―Quantum Dot Solar Cells. Journal of the American Chemical Society, 2014, 136, 9203-9210.	6.6	547
3	Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. Journal of the American Chemical Society, 2016, 138, 4201-4209.	6.6	537
4	Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. Journal of the American Chemical Society, 2003, 125, 8589-8594.	6.6	534
5	Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 15913-15922.	6.6	400
6	Near Infrared Absorption of CdSe _{<i>x</i>} Te _{1–<i>x</i>} Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. ACS Nano, 2013, 7, 5215-5222.	7.3	374
7	Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control. Journal of the American Chemical Society, 2015, 137, 5602-5609.	6.6	367
8	Quantum dot-sensitized solar cells. Chemical Society Reviews, 2018, 47, 7659-7702.	18.7	344
9	Highly Efficient Inverted Type-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells. ACS Nano, 2012, 6, 3982-3991.	7.3	307
10	Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells. ACS Nano, 2015, 9, 908-915.	7.3	241
11	Facile Synthesis of ZnSâ^'CuInS ₂ -Alloyed Nanocrystals for a Color-Tunable Fluorchrome and Photocatalyst. Inorganic Chemistry, 2011, 50, 4065-4072.	1.9	231
12	Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chemical Communications, 2012, 48, 11235.	2.2	231
13	Aminolysis Route to Monodisperse Titania Nanorods with Tunable Aspect Ratio. Angewandte Chemie - International Edition, 2005, 44, 3466-3470.	7.2	219
14	Bi2S3 nanostructures: A new photocatalyst. Nano Research, 2010, 3, 379-386.	5.8	209
15	Amorphous TiO ₂ Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%. Chemistry of Materials, 2015, 27, 8398-8405.	3.2	197
16	Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase. Journal of Materials Chemistry, 2008, 18, 2807.	6.7	196
17	Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%. Journal of Physical Chemistry Letters, 2017, 8, 559-564.	2.1	193
18	Color-Tunable Highly Bright Photoluminescence of Cadmium-Free Cu-Doped Zn–In–S Nanocrystals and Electroluminescence. Chemistry of Materials, 2014, 26, 1204-1212.	3.2	190

#	Article	IF	CITATIONS
19	Bilayer PbS Quantum Dots for Highâ€Performance Photodetectors. Advanced Materials, 2017, 29, 1702055.	11.1	189
20	Synthesis, Characterization, and Spectroscopy of Type-II Core/Shell Semiconductor Nanocrystals with ZnTe Cores. Advanced Materials, 2005, 17, 2741-2745.	11.1	176
21	Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%. Journal of Physical Chemistry Letters, 2016, 7, 3103-3111.	2.1	169
22	Highly selective detection of glutathione using a quantum-dot-based OFF–ON fluorescent probe. Chemical Communications, 2010, 46, 2971.	2.2	159
23	High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chemistry of Materials, 2005, 17, 4038-4042.	3.2	150
24	Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12%. Advanced Materials, 2018, 30, 1705746.	11.1	148
25	Design and Synthesis of Highly Luminescent Near-Infrared-Emitting Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Quantum Dots. Inorganic Chemistry, 2009, 48, 9723-9731.	1.9	147
26	Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity. Advanced Functional Materials, 2018, 28, 1706690.	7.8	143
27	Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 406-417.	2.1	140
28	Quantum dot-based "turn-on―fluorescent probe for detection of zinc and cadmium ions in aqueous media. Analytica Chimica Acta, 2011, 687, 82-88.	2.6	138
29	Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 796-806.	2.1	138
30	QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosensors and Bioelectronics, 2010, 25, 1934-1940.	5.3	133
31	CdSeTe/CdS Type-I Core/Shell Quantum Dot Sensitized Solar Cells with Efficiency over 9%. Journal of Physical Chemistry C, 2015, 119, 28800-28808.	1.5	131
32	Electroplating Cuprous Sulfide Counter Electrode for High-Efficiency Long-Term Stability Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 5683-5690.	1.5	130
33	Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A, 2016, 4, 877-886.	5.2	122
34	One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase. Nanotechnology, 2008, 19, 135604.	1.3	121
35	Facile Synthesis of Morphology-Controlled Platinum Nanocrystals. Chemistry of Materials, 2006, 18, 2468-2471.	3.2	119
36	One-step solution deposition of CsPbBr ₃ based on precursor engineering for efficient all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 22420-22428.	5.2	116

#	Article	IF	CITATIONS
37	Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. Journal of the American Chemical Society, 2021, 143, 4790-4800.	6.6	112
38	<i>In Situ</i> Photodeposited Construction of Pt–CdS/g-C ₃ N ₄ –MnO _{<i>x</i>} Composite Photocatalyst for Efficient Visible-Light-Driven Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 20579-20588.	4.0	111
39	Graded-Bandgap Quantum- Dot-Modified Nanotubes: A Sensitive Biosensor for Enhanced Detection of DNA Hybridization. Advanced Materials, 2007, 19, 1933-1936.	11.1	109
40	Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Analyst, The, 2011, 136, 196-200.	1.7	109
41	Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCd1-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength. Journal of Physical Chemistry B, 2004, 108, 15552-15559.	1.2	108
42	Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst, The, 2014, 139, 93-98.	1.7	108
43	CulnSe ₂ and CulnSe ₂ –ZnS based high efficiency "green―quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 1649-1655.	5.2	108
44	DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Analytical Biochemistry, 2010, 401, 47-52.	1.1	107
45	Synthesis of high-quality CdS, ZnS, and ZnxCd1 â^ xS nanocrystals using metal salts and elemental sulfur. Journal of Materials Chemistry, 2004, 14, 2790-2794.	6.7	105
46	Hg ²⁺ -mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Analyst, The, 2012, 137, 924-931.	1.7	101
47	Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. Journal of Materials Chemistry A, 2016, 4, 7214-7221.	5.2	101
48	Allâ€Inorganic CsPbI ₃ Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Advanced Functional Materials, 2021, 31, 2005930.	7.8	101
49	Facile Synthesis of Highly Luminescent UV-Blue-Emitting ZnSe/ZnS Core/Shell Nanocrystals in Aqueous Media. Journal of Physical Chemistry C, 2009, 113, 14145-14150.	1.5	99
50	Optimization of TiO ₂ photoanode films for highly efficient quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 13033.	5.2	98
51	Bifunctional Multidentate Ligand Modified Highly Stable Water-Soluble Quantum Dots. Inorganic Chemistry, 2010, 49, 3768-3775.	1.9	95
52	Facile Synthesis of Highly Luminescent Mn-Doped ZnS Nanocrystals. Inorganic Chemistry, 2011, 50, 10432-10438.	1.9	89
53	Modification of Energy Level Alignment for Boosting Carbonâ€Based CsPbI ₂ Br Solar Cells with 14% Certified Efficiency. Advanced Functional Materials, 2021, 31, 2011187.	7.8	89
54	One-step synthesis of water-soluble AgInS2 and ZnS–AgInS2 composite nanocrystals and their photocatalytic activities. Journal of Colloid and Interface Science, 2012, 377, 27-33.	5.0	87

#	Article	IF	CITATIONS
55	Alloying Strategy in Cu–In–Ga–Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 5328-5336.	4.0	87
56	Dual Emissive Manganese and Copper Co-Doped Zn–In–S Quantum Dots as a Single Color-Converter for High Color Rendering White-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 8659-8666.	4.0	86
57	Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled ITO@Cu ₂ S Nanowire Array Counter Electrodes. Nano Letters, 2015, 15, 3088-3095.	4.5	86
58	Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. Journal of Materials Chemistry A, 2017, 5, 14124-14133.	5.2	86
59	Preparation of Highly Luminescent CdTe/CdS Core/Shell Quantum Dots. ChemPhysChem, 2009, 10, 680-685.	1.0	84
60	Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution. Journal of Physical Chemistry C, 2007, 111, 526-531.	1.5	83
61	Highly selective and sensitive visualizable detection of Hg2+ based on anti-aggregation of gold nanoparticles. Talanta, 2011, 84, 508-512.	2.9	81
62	Functional Quantumâ€Dot/Dendrimer Nanotubes for Sensitive Detection of DNA Hybridization. Small, 2008, 4, 566-571.	5.2	80
63	Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 2015, 8, 3489-3496.	3.6	80
64	One-Pot Noninjection Synthesis of Cu-Doped Zn _{<i>x</i>} Cd _{1-<i>x</i>} S Nanocrystals with Emission Color Tunable over Entire Visible Spectrum. Inorganic Chemistry, 2012, 51, 3579-3587.	1.9	76
65	Controlled synthesis of silver phosphate crystals with high photocatalytic activity and bacteriostatic activity. CrystEngComm, 2012, 14, 8714.	1.3	75
66	Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells. Nano Energy, 2017, 32, 130-156.	8.2	73
67	Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. Journal of Materials Chemistry A, 2017, 5, 21442-21451.	5.2	73
68	CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media. Journal of Materials Chemistry A, 2016, 4, 16553-16561.	5.2	72
69	Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode. Nano Energy, 2016, 23, 60-69.	8.2	72
70	A strategy to boost the cell performance of CdSexTe1â^'x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer. Journal of Power Sources, 2016, 302, 266-273.	4.0	72
71	Znâ€Cuâ€Inâ€Sâ€Se Quinary "Green―Alloyed Quantumâ€Dotâ€Sensitized Solar Cells with a Certified Effici 14.4 %. Angewandte Chemie - International Edition, 2021, 60, 6137-6144.	ency of 7.2	72
72	Synthesis of Dumbbell-Shaped Manganese Oxide Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 2-4.	1.2	68

#	Article	IF	CITATIONS
73	A facile route to violet- to orange-emitting Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} Se alloy nanocrystals via cation exchange reaction. Nanotechnology, 2007, 18, 385606.	1.3	68
74	Controlling the Synthesis of CoO Nanocrystals with Various Morphologies. Journal of Physical Chemistry C, 2008, 112, 5322-5327.	1.5	68
75	Highly efficient, stable and reproducible CdSe-sensitized solar cells using copper sulfide as counter electrodes. Journal of Materials Chemistry A, 2015, 3, 6557-6564.	5.2	64
76	Distinguishing Localized Surface Plasmon Resonance and Schottky Junction of Au–Cu ₂ O Composites by Their Molecular Spacer Dependence. ACS Applied Materials & Interfaces, 2014, 6, 10958-10962.	4.0	63
77	Effects of Metal Oxyhydroxide Coatings on Photoanode in Quantum Dot Sensitized Solar Cells. Chemistry of Materials, 2016, 28, 2323-2330.	3.2	63
78	Scalable Single-Step Noninjection Synthesis of High-Quality Core/Shell Quantum Dots with Emission Tunable from Violet to Near Infrared. ACS Nano, 2012, 6, 11066-11073.	7.3	61
79	Recent advances in electrolytes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 4895-4911.	5.2	61
80	Quantum dot materials engineering boosting the quantum dot sensitized solar cell efficiency over 13%. Journal of Materials Chemistry A, 2020, 8, 10233-10241.	5.2	61
81	Highly efficient and stable quasi-solid-state quantum dot-sensitized solar cells based on a superabsorbent polyelectrolyte. Journal of Materials Chemistry A, 2016, 4, 1461-1468.	5.2	60
82	Enhancing Adsorption and Reaction Kinetics of Polysulfides Using CoP-Coated N-Doped Mesoporous Carbon for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 43844-43853.	4.0	60
83	Memory in quantum-dot photoluminescence blinking. New Journal of Physics, 2005, 7, 197-197.	1.2	55
84	Highly bright water-soluble silica coated quantum dots with excellent stability. Journal of Materials Chemistry B, 2014, 2, 5043-5051.	2.9	55
85	Antioxidative Stannous Oxalate Derived Leadâ€Free Stable CsSnX ₃ (X=Cl, Br, and I) Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 660-665.	7.2	55
86	Influence of Preferred Orientation on the Electrical Conductivity of Fluorine-Doped Tin Oxide Films. Scientific Reports, 2014, 4, 3679.	1.6	54
87	Influence of linker molecules on interfacial electron transfer and photovoltaic performance of quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 20882-20888.	5.2	52
88	Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances, 2018, 8, 3637-3645.	1.7	52
89	Coupling CsPbBr ₃ Quantum Dots with Covalent Triazine Frameworks for Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2021, 14, 1131-1139.	3.6	52
90	Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews, 2022, 122, 4091-4162.	23.0	52

#	Article	IF	CITATIONS
91	Morphology-controlled large-scale synthesis of ZnO nanocrystals from bulk ZnO. Chemical Communications, 2005, , 1158.	2.2	51
92	Boosting the Performance of Environmentally Friendly Quantum Dotâ€Sensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Advanced Materials, 2019, 31, e1903696.	11.1	51
93	Quantification of photoinduced and spontaneous quantum-dot luminescence blinking. Physical Review B, 2005, 72, .	1.1	50
94	Single-Crystal Bi ₂ S ₃ Nanosheets Growing via Attachment–Recrystallization of Nanorods. Inorganic Chemistry, 2011, 50, 7729-7734.	1.9	50
95	Performance enhancement of quantum dot sensitized solar cells by adding electrolyte additives. Journal of Materials Chemistry A, 2015, 3, 17091-17097.	5.2	49
96	Poly(vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 11416-11421.	5.2	49
97	Graphene hydrogel-based counter electrode for high efficiency quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 1614-1622.	5.2	49
98	Mitochondrial injury induced by nanosized titanium dioxide in A549 cells and rats. Environmental Toxicology and Pharmacology, 2013, 36, 66-72.	2.0	48
99	Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media. Nanotechnology, 2010, 21, 305604.	1.3	47
100	Quantum dots-based ratiometric fluorescence probe for mercuric ions in biological fluids. Talanta, 2014, 119, 564-571.	2.9	47
101	Quasi-solid-state quantum dot sensitized solar cells with power conversion efficiency over 9% and high stability. Journal of Materials Chemistry A, 2016, 4, 14849-14856.	5.2	47
102	Synthesis of highly stable dihydrolipoic acid capped water-soluble CdTe nanocrystals. Nanotechnology, 2008, 19, 235603.	1.3	45
103	FeNi intermetallic compound nanoparticles wrapped with N-doped graphitized carbon: a novel cocatalyst for boosting photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 3481-3490.	5.2	45
104	Modified Graphitic Carbon Nitride Nanosheets for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 4996-5006.	3.6	43
105	Aqueous phase synthesis of biostabilizer capped CdS nanocrystals with bright emission. Journal of Luminescence, 2009, 129, 536-540.	1.5	42
106	Metal–organic framework derived Co,N-bidoped carbons as superior electrode catalysts for quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 2129-2138.	5.2	41
107	Size- and Composition-Dependent Energy Transfer from Charge Transporting Materials to ZnCuInS Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 11973-11979.	1.5	39
108	High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes. ACS Applied Materials & Interfaces, 2017, 9, 22549-22559.	4.0	39

#	Article	IF	CITATIONS
109	TiO ₂ Nanocrystal/Perovskite Bilayer for Highâ€Performance Photodetectors. Advanced Electronic Materials, 2017, 3, 1700251.	2.6	39
110	Facile synthesis of red- to near-infrared-emitting CdTexSe1â^'x alloyed quantum dots via a noninjection one-pot route. Journal of Luminescence, 2011, 131, 322-327.	1.5	38
111	Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method. Nanoscale, 2015, 7, 17547-17555.	2.8	37
112	FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer. Journal of Energy Chemistry, 2021, 52, 92-101.	7.1	37
113	Topotactically Grown Bismuth Sulfide Network Film on Substrate as Low-Cost Counter Electrodes for Quantum Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16602-16610.	1.5	35
114	A quantum dot-based "off–on―fluorescent probe for biological detection of zinc ions. Analyst, The, 2013, 138, 2181.	1.7	34
115	Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium–sulfur battery. Journal of Alloys and Compounds, 2020, 832, 154947.	2.8	34
116	Nanostructure and charge transfer in Bi ₂ S ₃ -TiO ₂ heterostructures. Nanotechnology, 2014, 25, 215702.	1.3	32
117	A panel of promoter methylation markers for invasive and noninvasive early detection of NSCLC using a quantum dots-based FRET approach. Biosensors and Bioelectronics, 2016, 85, 641-648.	5.3	32
118	Preparation of Bismuth Oxide Quantum Dots and their Photocatalytic Activity in a Homogeneous System. ChemCatChem, 2010, 2, 1115-1121.	1.8	31
119	Direct methylation of N-methylaniline with CO ₂ /H ₂ catalyzed by gold nanoparticles supported on alumina. RSC Advances, 2015, 5, 99678-99687.	1.7	31
120	Cs2SnI6 nanocrystals enhancing hole extraction for efficient carbon-based CsPbI2Br perovskite solar cells. Chemical Engineering Journal, 2022, 440, 135710.	6.6	31
121	Depositing a Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} S Shell around CdSe Core Nanocrystals via a Noninjection Approach in Aqueous Media. Journal of Physical Chemistry C, 2009, 113, 4301-4306.	1.5	30
122	A general and reversible phase transfer strategy enabling nucleotides modified high-quality water-soluble nanocrystals. Chemical Communications, 2012, 48, 5718.	2.2	30
123	Morphology control of fluorine-doped tin oxide thin films for enhanced light trapping. Solar Energy Materials and Solar Cells, 2015, 132, 578-588.	3.0	30
124	Perovskiteâ€Compatible Carbon Electrode Improving the Efficiency and Stability of CsPbI ₂ Br Solar Cells. Solar Rrl, 2020, 4, 2000431.	3.1	30
125	ZnS _{<i>x</i>} Se _{1–<i>x</i>} Alloy Passivation Layer for High-Efficiency Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 41415-41423.	4.0	29
126	Vanadium Nitride Quantum Dots/Holey Graphene Matrix Boosting Adsorption and Conversion Reaction Kinetics for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 30746-30755.	4.0	29

#	Article	IF	CITATIONS
127	Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 18936-18944.	4.0	28
128	Strong optical limiting capability of a triosmium cluster bonded indium porphyrin complex [(TPP)InOs3(μ-H)2(CO)9(μ-η2-C5H4N)]. Chemical Communications, 2003, , 1882-1883.	2.2	26
129	Controlled Sulfidation Approach for Copper Sulfide–Carbon Hybrid as an Effective Counter Electrode in Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 16500-16506.	1.5	26
130	Cuprous sulfide on Ni foam as a counter electrode for flexible quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 11754-11761.	5.2	26
131	Synergistic passivation by alkali metal and halogenoid ions for high efficiency HTM-free carbon-based CsPbI2Br solar cells. Chemical Engineering Journal, 2022, 430, 133083.	6.6	26
132	A ZnS and metal hydroxide composite passivation layer for recombination control in high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 18976-18982.	5.2	25
133	MOF-Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High-Efficiency Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4974-4979.	2.1	25
134	Free-standing 3D nitrogen-doped graphene/Co4N aerogels with ultrahigh sulfur loading for high volumetric energy density Li-S batteries. Journal of Alloys and Compounds, 2022, 901, 163625.	2.8	25
135	Improving Loading Amount and Performance of Quantum Dot-Sensitized Solar Cells through Metal Salt Solutions Treatment on Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 31006-31015.	4.0	24
136	Solar Paint from TiO2 Particles Supported Quantum Dots for Photoanodes in Quantum Dot–Sensitized Solar Cells. ACS Omega, 2018, 3, 1102-1109.	1.6	24
137	<i>In situ</i> photo-derived MnOOH collaborating with Mn ₂ Co ₂ C@C dual co-catalysts boost photocatalytic overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17120-17127.	5.2	24
138	Quantum Dots Acting as Energy Acceptors with Organic Dyes as Donors in Solution. ChemPhysChem, 2010, 11, 3167-3171.	1.0	23
139	Semiconductor quantum dots photosensitizing release of anticancer drug. Chemical Communications, 2011, 47, 1482-1484.	2.2	23
140	Continuous Preparation of Carbon Nanotube Film and Its Applications in Fuel and Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7818-7825.	4.0	23
141	Antioxidative Stannous Oxalate Derived Leadâ€Free Stable CsSnX ₃ (X=Cl, Br, and I) Perovskite Nanocrystals. Angewandte Chemie, 2021, 133, 670-675.	1.6	23
142	Optimizing the deposition of CdSe colloidal quantum dots on TiO ₂ film electrode via capping ligand induced self-assembly approach. RSC Advances, 2015, 5, 86023-86030.	1.7	22
143	Graphene quantum dots assisted photovoltage and efficiency enhancement in CdSe quantum dot sensitized solar cells. Journal of Energy Chemistry, 2015, 24, 722-728.	7.1	22
144	Dimensionality-dependent performance of nanostructured bismuth sulfide in photodegradation of organic dyes. Materials Chemistry and Physics, 2013, 138, 755-761.	2.0	21

#	Article	IF	CITATIONS
145	Dip-coated colloidal quantum-dot films for high-performance broadband photodetectors. Journal of Materials Chemistry C, 2019, 7, 6266-6272.	2.7	21
146	Enhancing Loading Amount and Performance of Quantum-Dot-Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots from Bicomponent Solvents. Journal of Physical Chemistry Letters, 2019, 10, 229-237.	2.1	21
147	Crystallographic characterization of the intermediate in the synthesis of tetrazole from nitrile and azide in water. Inorganic Chemistry Communication, 2004, 7, 492-494.	1.8	20
148	Electrochemically Controlled Surface Plasmon Enhanced Fluorescence Response of Surface Immobilized CdZnSe Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 6003-6008.	1.5	20
149	Nanostructuring Polymeric Materials by Templating Strategies. Small, 2011, 7, 1384-1391.	5.2	20
150	Dualâ€Functional Quantum Dot Seeding Growth of Highâ€Quality Airâ€Processed CsPbl ₂ Br Film for Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100989.	3.1	20
151	Growth of anisotropic platinum nanostructures catalyzed by gold seed nanoparticles. Nano Research, 2008, 1, 249-257.	5.8	19
152	Depositing ZnS shell around ZnSe core nanocrystals in aqueous media via direct thermal treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 109-116.	2.3	19
153	Alcoholysis route to monodisperse CoO nanotetrapods with tunable size. Nanotechnology, 2007, 18, 195605.	1.3	18
154	Noninjection Facile Synthesis of Gram-Scale Highly Luminescent CdSe Multipod Nanocrystals. Inorganic Chemistry, 2012, 51, 531-535.	1.9	17
155	Mild-method synthesised rGO–TiO2 as an effective Polysulphide–Barrier for Lithium–Sulphur batteries. Journal of Alloys and Compounds, 2020, 836, 155341.	2.8	17
156	Modification of compact TiO2 layer by TiCl4-TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbl2Br perovskite solar cells. Journal of Energy Chemistry, 2021, 63, 442-451.	7.1	17
157	A novel metal–organic framework with bifunctional tetrazolate-5-carboxylate ligand: Crystal structure and luminescent properties. Inorganic Chemistry Communication, 2011, 14, 407-410.	1.8	16
158	Determination of dissolved oxygen based on photoinduced electron transfer from quantum dots to methyl viologen. Analytical Methods, 2010, 2, 1056.	1.3	15
159	Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells. Journal of Energy Chemistry, 2019, 38, 147-152.	7.1	15
160	Lightweight Free-Standing 3D Nitrogen-Doped Graphene/TiN Aerogels with Ultrahigh Sulfur Loading for High Energy Density Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 7599-7610.	2.5	15
161	Stable water-soluble quantum dots capped by poly(ethylene glycol) modified dithiocarbamate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410, 144-152.	2.3	14
162	Proton Initiated Ligand Exchange Reactions for Colloidal Nanocrystals Functionalized by Inorganic Ligands with Extremely Weak Coordination Ability. Chemistry of Materials, 2020, 32, 630-637.	3.2	14

XINHUA ZHONG

#	Article	IF	CITATIONS
163	Titanium mesh based fully flexible highly efficient quantum dots sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 5577-5584.	5.2	13
164	Controllable synthesis and optical properties of CdS/CdSe hetero-nanostructures with various dimensionalities. Materials Chemistry and Physics, 2010, 121, 118-124.	2.0	12
165	Silica coating of luminescent quantum dots prepared in aqueous media for cellular labeling. Materials Research Bulletin, 2014, 60, 543-551.	2.7	12
166	Enhancing Electron and Hole Extractions for Efficient PbS Quantum Dot Solar Cells. Solar Rrl, 2017, 1, 1700176.	3.1	12
167	Hole transport materials mediating hole transfer for high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 997-1005.	5.2	12
168	Monitoring the Covalent Binding of Quantum Dots to Functionalized Gold Surfaces by Surface Plasmon Resonance Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 10313-10319.	1.5	11
169	Single-source precursor route for overcoating CdS and ZnS shells around CdSe core nanocrystals. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 214-220.	0.4	11
170	TiO2 hierarchical nanowire-P25 particulate composite photoanodes in combination with N-doped mesoporous carbon/Ti counter electrodes for high performance quantum dot-sensitized solar cells. Solar Energy, 2019, 191, 459-467.	2.9	11
171	Airâ€Processed Carbonâ€Based Cs _{0.5} FA _{0.5} PbI ₃ –Cs ₄ PbI ₆ Heterostructure Perovskite Solar Cells with Efficiency Over 16%. Solar Rrl, 2022, 6, .	3.1	11
172	New strategy for band-gap tuning in semiconductor nanocrystals. Research on Chemical Intermediates, 2008, 34, 287-298.	1.3	10
173	Noninjection ultralarge-scaled synthesis of shape-tunable CdS nanocrystals as photocatalysts. RSC Advances, 2013, 3, 17477.	1.7	10
174	Origin of the effects of PEG additives in electrolytes on the performance of quantum dot sensitized solar cells. RSC Advances, 2018, 8, 29958-29966.	1.7	10
175	Reactions of 1,2,3-triphenyl-1,2,3-triphosphaindan with activated triosmium carbonyl clusters: characterization and crystal structure of the products. Dalton Transactions RSC, 2001, , 1151-1158.	2.3	9
176	Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials. Talanta, 2009, 78, 1102-1106.	2.9	9
177	Ternary Monolithic ZnS/CdS/rGO Photomembrane with Desirable Charge Separation/Transfer Routes for Effective Photocatalytic and Photoelectrochemical Hydrogen Generation. Chemistry - an Asian Journal, 2019, 14, 3431-3441.	1.7	9
178	1,2,3,4-Tetraphenyl-1,2,3,4-tetraphospholane, a Highly Versatile Cyclocarbaphosphine Ligand:Â Reactions with Activated Triosmium Clusters and Characterization of the Products. Inorganic Chemistry, 2002, 41, 3791-3800.	1.9	8
179	Synthesis and structural studies of polynuclear ruthenium clusters derived from reactions of 1,2,3,4-tetraphenyl-1,2,3,4-tetraphospholane with [Ru3(CO)12]. Journal of Organometallic Chemistry, 2004, 689, 361-368.	0.8	8
180	Zn uâ€Inâ€Sâ€Se Quinary "Green―Alloyed Quantumâ€Dotâ€Sensitized Solar Cells with a Certified Effici 14.4 %. Angewandte Chemie, 2021, 133, 6202-6209.	ency of	8

#	Article	IF	CITATIONS
181	Pre-synthesized quantum dot deposition approach to obtain high efficient quantum dot solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038806.	0.2	8
182	NANOSCOPIC BUILDING BLOCKS FROM POLYMERS, METALS, AND SEMICONDUCTORS FOR HYBRID ARCHITECTURES. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 229-241.	1.1	7
183	Facile synthesis of ZnS–CdIn2S4-alloyed nanocrystals with tunable band gap and its photocatalytic activity. Journal of Luminescence, 2013, 135, 47-54.	1.5	7
184	Visual detection of biological thiols based on lightening quantum dot–TiO2 composites. Analyst, The, 2014, 139, 996.	1.7	7
185	Significant roughness enhancement of fluorine-doped tin oxide films with low resistivity and high transparency by using HNO ₃ addition. RSC Advances, 2015, 5, 52174-52182.	1.7	7
186	Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells. ChemSusChem, 2016, 9, 296-301.	3.6	7
187	Self-supported metal sulphide nanocrystals-assembled nanosheets on carbon paper as efficient counter electrodes for quantum-dot-sensitized solar cells. Science China Chemistry, 2018, 61, 1338-1344.	4.2	7
188	Mn-doped ZnO nanonails and their magnetic properties. Nanotechnology, 2010, 21, 095606.	1.3	6
189	Encapsulation of Quantum Dot Clusters in Stimuli-Responsive Spherical Polyelectrolyte Brushes. Industrial & Engineering Chemistry Research, 2014, 53, 11326-11332.	1.8	6
190	A new method of preparation of iron(II) porphyrin complexes—isolation and characterization of amine complexes of ferrous porphyrin. Polyhedron, 1996, 15, 2677-2679.	1.0	5
191	Design and Synthesis of High-Quality CdS/ZnSe Type-II Core/Shell Nanocrystals. Journal of Nanoscience and Nanotechnology, 2009, 9, 5880-5886.	0.9	5
192	High Sensibility of Quantum Dots to Metal Ions Inspired by Hydroxyapatite Microbeads. Chinese Journal of Chemistry, 2010, 28, 1005-1012.	2.6	4
193	Fractional Contributions of Defect-Originated Photoluminescence from CuInS ₂ /ZnS Coreshells for Hybrid White LEDs. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	4
194	High-Quality Water-Soluble Core/Shell/Shell CdSe/CdS/ZnS Quantum Dots Balanced by Ionic and Nonionic Hydrophilic Capping Ligands. Nano, 2016, 11, 1650073.	0.5	4
195	Controlled synthesis and characterizations of thermo-stabilized Ag3PO4 crystals. Research on Chemical Intermediates, 2016, 42, 8285-8304.	1.3	4
196	Synthesis, NMR and structural studies of cluster derivatives derived from reactions of 1,2,3-triphenyl-1,2,3-triphosphaindan with [Os3(CO)10(μ-H)2]. Journal of Organometallic Chemistry, 2003, 665, 218-225.	0.8	3
197	Reactions of 1,2,3-Triphenyl-1,2,3-triphosphaindan with Triruthenium Cluster. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1463-1467.	0.8	2
198	OPTICS WITH NANO-SIZED STRUCTURES MADE FROM SEMICONDUCTORS AND (NOBLE) METALS. Journal of Nonlinear Optical Physics and Materials, 2006, 15, 355-367.	1,1	1

#	Article	IF	CITATIONS
199	Nanoscopic building blocks from polymers, metals, and semiconductors. , 2007, , .		1
200	Synthesis of Positively Charged Luminescent CdTe Nanocrystals in Aqueous Solution. Journal of Dispersion Science and Technology, 2009, 30, 388-393.	1.3	1
201	Facile synthesis of high-quality CdTe/CdS core/shell quantum dots in aqueous phase by using dual capping ligands. RSC Advances, 0, , .	1.7	1
202	Enhanced Photocatalytic Degradation of Organic Dyes by Palladium Nanocrystals. Journal of Nanoscience and Nanotechnology, 2016, 16, 7497-7502.	0.9	1
203	Morphology-Controlled Large-Scale Synthesis of ZnO Nanocrystals from Bulk ZnO ChemInform, 2005, 36, no.	0.1	0
204	High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals ChemInform, 2005, 36, no.	0.1	0
205	Controllable growth of silver-seeded PbS nanostructures. Journal of Materials Science, 2011, 46, 670-674.	1.7	0