Teng Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/338329/publications.pdf

Version: 2024-02-01

361413 454955 3,302 32 20 h-index citations papers

g-index 36 36 36 6819 docs citations times ranked citing authors all docs

30

#	Article	IF	CITATIONS
1	Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nature Structural and Molecular Biology, 2013, 20, 908-913.	8.2	524
2	Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7319-7324.	7.1	332
3	Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell, 2019, 176, 831-843.e22.	28.9	317
4	Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nature Communications, 2016, 7, 10982.	12.8	267
5	Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5207-E5215.	7.1	266
6	Smad7 Antagonizes Transforming Growth Factor \hat{I}^2 Signaling in the Nucleus by Interfering with Functional Smad-DNA Complex Formation. Molecular and Cellular Biology, 2007, 27, 4488-4499.	2.3	220
7	Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell, 2018, 33, 173-186.e5.	16.8	201
8	Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nature Genetics, 2016, 48, 1142-1150.	21.4	196
9	MCP-1 mediates TGF-β–induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood, 2007, 109, 987-994.	1.4	184
10	BMP4 Signaling Acts via Dual-Specificity Phosphatase 9 to Control ERK Activity in Mouse Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 171-182.	11.1	134
11	Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Research, 2010, 20, 36-44.	5.5	108
12	GSK3 \hat{I}^2 mediates suppression of cyclin D2 expression by tumor suppressor PTEN. Oncogene, 2007, 26, 2471-2482.	5.9	87
13	Amplitude modulation of androgen signaling by c-MYC. Genes and Development, 2013, 27, 734-748.	5.9	78
14	Smad2 mediates Activin/Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells. Cell Research, 2010, 20, 1306-1318.	12.0	62
15	A systematic approach identifies FOXA1 as a key factor in the loss of epithelial traits during the epithelial-to-mesenchymal transition in lung cancer. BMC Genomics, 2013, 14, 680.	2.8	58
16	The Suppression of CRMP2 Expression by Bone Morphogenetic Protein (BMP)-SMAD Gradient Signaling Controls Multiple Stages of Neuronal Development. Journal of Biological Chemistry, 2010, 285, 39039-39050.	3.4	49
17	A chemical-enhanced system for CRISPR-Based nucleic acid detection. Biosensors and Bioelectronics, 2021, 192, 113493.	10.1	37
18	Deciphering essential cistromes using genome-wide CRISPR screens. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25186-25195.	7.1	33

#	Article	IF	CITATIONS
19	BMP Induces Cochlin Expression to Facilitate Self-renewal and Suppress Neural Differentiation of Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2013, 288, 8053-8060.	3.4	28
20	Regulation of embryonic stem cell self-renewal and differentiation by TGF- \hat{l}^2 family signaling. Science China Life Sciences, 2010, 53, 497-503.	4.9	27
21	Enhancer RNAs Mediate Estrogen-Induced Decommissioning of Selective Enhancers by Recruiting ERα and Its Cofactor. Cell Reports, 2020, 31, 107803.	6.4	17
22	Ultrasmall Copper–Gallic Acid Nanodots for Chemodynamic Therapy. Advanced Materials Interfaces, 2021, 8, 2101173.	3.7	14
23	Ionic liquids enable the preparation of a copper-loaded gel with transdermal delivery function for wound dressings. Biomaterials Science, 2022, 10, 1041-1052.	5.4	12
24	High Expression of FGD3, a Putative Regulator of Cell Morphology and Motility, Is Prognostic of Favorable Outcome in Multiple Cancers. JCO Precision Oncology, 2017, 1, 1-13.	3.0	11
25	A computational framework of host-based drug repositioning for broad-spectrum antivirals against RNA viruses. IScience, 2021, 24, 102148.	4.1	10
26	Activin Regulates Self-renewal and Differentiation of Trophoblast Stem Cells by Down-regulating the X Chromosome Gene Bcor. Journal of Biological Chemistry, 2015, 290, 22019-22029.	3.4	8
27	CDKL3 promotes osteosarcoma progression by activating Akt/PKB. Life Science Alliance, 2020, 3, e202000648.	2.8	7
28	Improving Cancer Immunotherapy with CRISPRâ€Based Technology. Advanced Biology, 2020, 4, e1900253.	3.0	6
29	An in silico drug repositioning workflow for host-based antivirals. STAR Protocols, 2021, 2, 100653.	1.2	3
30	Targeting RNA binding protein in prostate cancer. Molecular and Cellular Oncology, 2017, 4, e1353855.	0.7	2
31	Data Integration on Noncoding RNA Studies. , 0, , 403-424.		O
32	Abstract 5238: Integrative analysis of functional long noncoding RNAs during prostate cancer progression. , 2014, , .		0