Ben Antebi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3383199/publications.pdf Version: 2024-02-01

REN ANTERI

#	Article	IF	CITATIONS
1	<scp>Freezeâ€dried</scp> platelets are a promising alternative in bleeding thrombocytopenic patients with hematological malignancies. American Journal of Hematology, 2022, 97, 256-266.	4.1	11
2	Freeze-dried platelets promote clot formation, attenuate endothelial cell permeability, and decrease pulmonary vascular leak in a murine model of hemorrhagic shock. Journal of Trauma and Acute Care Surgery, 2021, 90, 203-214.	2.1	11
3	Evaluation of sepsis using compensatory reserve measurement: A prospective clinical trial. Journal of Trauma and Acute Care Surgery, 2020, 89, S153-S160.	2.1	13
4	Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period. Journal of Translational Medicine, 2019, 17, 297.	4.4	53
5	Mesenchymal Stem Cells Reconditioned in Their Own Serum Exhibit Augmented Therapeutic Properties in the Setting of Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2019, 8, 1092-1106.	3.3	26
6	Preconditioning in an Inflammatory Milieu Augments the Immunotherapeutic Function of Mesenchymal Stromal Cells. Cells, 2019, 8, 462.	4.1	25
7	Bench-to-bedside optimization of mesenchymal stem cell isolation, processing, and expansion forin vivoadministration. Regenerative Medicine, 2019, 14, 279-293.	1.7	2
8	Prehospital trauma experience of the Israel defense forces on the Syrian border 2013–2017. Journal of Trauma and Acute Care Surgery, 2019, 87, S165-S171.	2.1	14
9	Antibiotic Treatment – What Can Be Learned from Point of Injury Experience?. Military Medicine, 2018, 183, 466-471.	0.8	3
10	The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. Journal of Trauma and Acute Care Surgery, 2018, 84, 183-191.	2.1	31
11	Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respiratory Research, 2018, 19, 218.	3.6	80
12	The effect of acute respiratory distress syndrome on bone marrow-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2018, 9, 251.	5.5	16
13	Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Research and Therapy, 2018, 9, 265.	5.5	98
14	Battlefield pain management. Journal of Trauma and Acute Care Surgery, 2017, 83, S150-S155.	2.1	22
15	Quantitative Assessment of Optimal Bone Marrow Site for the Isolation of Porcine Mesenchymal Stem Cells. Stem Cells International, 2017, 2017, 1-10.	2.5	34
16	BMP6-Engineered MSCs Induce Vertebral Bone Repair in a Pig Model: A Pilot Study. Stem Cells International, 2016, 2016, 1-8.	2.5	27
17	Controlling Arteriogenesis and Mast Cells Are Central to Bioengineering Solutions for Critical Bone Defect Repair Using Allografts. Bioengineering, 2016, 3, 6.	3.5	10
18	Analysis of injury patterns and roles of care in US and Israel militaries during recent conflicts. Journal of Trauma and Acute Care Surgery, 2016, 81, S87-S94.	2.1	10

Ben Antebi

#	Article	IF	CITATIONS
19	PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries. Molecular Therapy, 2016, 24, 318-330.	8.2	43
20	Stromal-Cell-Derived Extracellular Matrix Promotes the Proliferation and Retains the Osteogenic Differentiation Capacity of Mesenchymal Stem Cells on Three-Dimensional Scaffolds. Tissue Engineering - Part C: Methods, 2015, 21, 171-181.	2.1	59
21	Stem Cell Therapy for Osteoporosis. Current Osteoporosis Reports, 2014, 12, 41-47.	3.6	108
22	Biomimetic Collagen–Hydroxyapatite Composite Fabricated via a Novel Perfusion-Flow Mineralization Technique. Tissue Engineering - Part C: Methods, 2013, 19, 487-496.	2.1	66