Julian Eastoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/338244/publications.pdf

Version: 2024-02-01

293 papers

14,817 citations

63 h-index 28275 105 g-index

302 all docs 302 docs citations

302 times ranked

11295 citing authors

#	Article	IF	CITATIONS
1	Surfactants and nanoscience. , 2022, , 153-182.		4
2	A guide to designing graphene-philic surfactants. Journal of Colloid and Interface Science, 2022, 620, 346-355.	5.0	2
3	Fabrication and application of composite adsorbents made by one-pot electrochemical exfoliation of graphite in surfactant ionic liquid/nanocellulose mixtures. Physical Chemistry Chemical Physics, 2021, 23, 19313-19328.	1.3	4
4	Controlling water adhesion on superhydrophobic surfaces with bi-functional polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126307.	2.3	4
5	Very low surface tensions with "Hedgehog―surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127690.	2.3	3
6	Electrochemical exfoliation of graphite in nanofibrillated kenaf cellulose (NFC)/surfactant mixture for the development of conductive paper. Carbohydrate Polymers, 2020, 228, 115376.	5.1	10
7	Design of Surfactant Tails for Effective Surface Tension Reduction and Micellization in Water and/or Supercritical CO ₂ . Langmuir, 2020, 36, 14829-14840.	1.6	12
8	Highly branched triple-chain surfactant-mediated electrochemical exfoliation of graphite to obtain graphene oxide: colloidal behaviour and application in water treatment. Physical Chemistry Chemical Physics, 2020, 22, 12732-12744.	1.3	8
9	Water-in-CO2 Microemulsions Stabilized by an Efficient Catanionic Surfactant. Langmuir, 2020, 36, 7418-7426.	1.6	3
10	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	13.3	144
11	JCIS experiences accelerated interest and recognition. Journal of Colloid and Interface Science, 2019, 552, 801.	5.0	O
12	Surfactants with aromatic headgroups for optimizing properties of graphene/natural rubber latex composites (NRL): Surfactants with aromatic amine polar heads. Journal of Colloid and Interface Science, 2019, 545, 184-194.	5.0	14
13	Water-in-CO ₂ Microemulsions Stabilized by Fluorinated Cation–Anion Surfactant Pairs. Langmuir, 2019, 35, 3445-3454.	1.6	16
14	NMR-Responsive Paramagnetic [M-EDTA] (M = Fe $<$ sup $>$ 3+ $<$ /sup $>$, Mn $<$ sup $>$ 2+ $<$ /sup $>$, Cu $<$ sup $>$ 2+ $<$ /sup $>$) Complexes to Differentiate T $<$ sub $>$ 2 $<$ /sub $>$ -Distribution Signals of Crude Oil and Brine. Energy & Energy	2.5	6
15	Conversion of "Waste Plastic―into Photocatalytic Nanofoams for Environmental Remediation. ACS Applied Materials & Interfaces, 2018, 10, 8077-8085.	4.0	33
16	Synthesis, characterization, and relaxometry studies of hydrophilic and hydrophobic superparamagnetic Fe 3 O 4 nanoparticles for oil reservoir applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 133-143.	2.3	31
17	Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO2. Colloids and Surfaces B: Biointerfaces, 2018, 168, 201-210.	2.5	17
18	Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity. Journal of Colloid and Interface Science, 2018, 516, 34-47.	5.0	41

#	Article	IF	CITATIONS
19	Self-Assembled Magnetic Viruslike Particles for Encapsulation and Delivery of Deoxyribonucleic Acid. Langmuir, 2018, 34, 7171-7179.	1.6	12
20	Surface and bulk properties of surfactants used in fire-fighting. Journal of Colloid and Interface Science, 2018, 530, 686-694.	5.0	37
21	Continued positive development of JCIS. Journal of Colloid and Interface Science, 2018, 529, A1-A2.	5.0	0
22	Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic surfactant ionic liquids as exfoliating and stabilizing agents. Carbohydrate Polymers, 2018, 201, 48-59.	5.1	15
23	Alternative Route to Nanoscale Aggregates with a pH-Responsive Random Copolymer. Langmuir, 2017, 33, 2628-2638.	1.6	7
24	Tuning Micellar Structures in Supercritical CO ₂ Using Surfactant and Amphiphile Mixtures. Langmuir, 2017, 33, 2655-2663.	1.6	8
25	Magnetic and Phase Behavior of Magnetic Waterâ€inâ€Oil Microemulsions. Journal of Surfactants and Detergents, 2017, 20, 799-804.	1.0	3
26	Foams: From nature to industry. Advances in Colloid and Interface Science, 2017, 247, 496-513.	7.0	141
27	Solubilisation of oils in aqueous solutions of a random cationic copolymer. Journal of Colloid and Interface Science, 2017, 502, 210-218.	5. 0	4
28	Charging Poly(methyl Methacrylate) Latexes in Nonpolar Solvents: Effect of Particle Concentration. Langmuir, 2017, 33, 13543-13553.	1.6	3
29	Structural studies of thermally stable, combustion-resistant polymer composites. Polymer Journal, 2017, 49, 711-719.	1.3	11
30	Electrolyte-induced Instability of Colloidal Dispersions in Nonpolar Solvents. Journal of Physical Chemistry Letters, 2017, 8, 4668-4672.	2.1	13
31	Editorial: Positive developments for JCIS. Journal of Colloid and Interface Science, 2017, 505, A1-A2.	5.0	0
32	Trimethylsilyl hedgehogs – a novel class of super-efficient hydrocarbon surfactants. Physical Chemistry Chemical Physics, 2017, 19, 23869-23877.	1.3	14
33	Magnetic surfactants as molecular based-magnets with spin glass-like properties. Journal of Physics Condensed Matter, 2016, 28, 176002.	0.7	11
34	Effect of surfactant headgroup on low-fluorine-content CO2-philic hybrid surfactants. Journal of Supercritical Fluids, 2016, 116, 148-154.	1.6	12
35	New Class of Amphiphiles Designed for Use in Water-in-Supercritical CO2Microemulsions. Langmuir, 2016, 32, 12413-12422.	1.6	12
36	The internal structure of poly(methyl methacrylate) latexes in nonpolar solvents. Journal of Colloid and Interface Science, 2016, 479, 234-243.	5.0	5

#	Article	IF	Citations
37	Shape Modification of Water-in-CO ₂ Microemulsion Droplets through Mixing of Hydrocarbon and Fluorocarbon Amphiphiles. Langmuir, 2016, 32, 1421-1428.	1.6	12
38	Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid and Interface Science, 2016, 230, 54-69.	7.0	34
39	The effect of solvent and counterion variation on inverse micelle CMCs in hydrocarbon solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 194-200.	2.3	27
40	The effects of counterion exchange on charge stabilization for anionic surfactants in nonpolar solvents. Journal of Colloid and Interface Science, 2016, 465, 316-322.	5.0	25
41	Branched Hydrocarbon Low Surface Energy Materials for Superhydrophobic Nanoparticle Derived Surfaces. ACS Applied Materials & Surfaces, 2016, 8, 660-666.	4.0	138
42	Responsive materials based on magnetic polyelectrolytes and graphene oxide for water clean-up. Journal of Colloid and Interface Science, 2016, 464, 285-290.	5.0	21
43	Spin State As a Probe of Vesicle Self-Assembly. Journal of the American Chemical Society, 2016, 138, 2552-2555.	6.6	24
44	Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. Journal of Colloid and Interface Science, 2015, 455, 179-187.	5.0	73
45	Sulfosuccinate and Sulfocarballylate Surfactants As Charge Control Additives in Nonpolar Solvents. Langmuir, 2015, 31, 13690-13699.	1.6	6
46	Noncovalent Magnetic Control and Reversible Recovery of Graphene Oxide Using Iron Oxide and Magnetic Surfactants. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2124-2133.	4.0	68
47	Modelling the interfacial behaviour of dilute light-switching surfactant solutions. Journal of Colloid and Interface Science, 2015, 445, 16-23.	5.0	36
48	Economical and Efficient Hybrid Surfactant with Low Fluorine Content for the Stabilisation of Water-in-CO2 Microemulsions. Journal of Supercritical Fluids, 2015, 98, 127-136.	1.6	19
49	Metallo-Solid Lipid Nanoparticles as Colloidal Tools for Meso–Macroporous Supported Catalysts. Langmuir, 2015, 31, 1842-1849.	1.6	21
50	Effect of Fluorocarbon and Hydrocarbon Chain Lengths in Hybrid Surfactants for Supercritical CO ₂ . Langmuir, 2015, 31, 7479-7487.	1.6	20
51	Liquid films, interfaces and colloidal dispersions. Journal of Colloid and Interface Science, 2015, 449, 1.	5.0	0
52	Surface Design and Engineering 2014. Journal of Colloid and Interface Science, 2015, 447, 128.	5.0	0
53	Action of hydrotropes in water-in-CO2 microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 476, 76-82.	2.3	11
54	Surfactants at the Design Limit. Langmuir, 2015, 31, 8205-8217.	1.6	124

#	Article	IF	Citations
55	Surfactants with colloids: Adsorption or absorption?. Journal of Colloid and Interface Science, 2015, 449, 205-214.	5.0	22
56	Celebrating <i>Soft Matter </i> 's 10th Anniversary: Influencing the charge of poly(methyl) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50 702 Td
57	Magnetic surfactants. Current Opinion in Colloid and Interface Science, 2015, 20, 140-150.	3.4	83
58	Pd- Î- ³ -C ₆ H ₉ complexes of the Trost modular ligand: high nuclearity columnar aggregation controlled by concentration, solvent and counterion. Chemical Science, 2015, 6, 5793-5801.	3.7	12
59	Periodic Formation/Breakdown of Lamellar Aggregates with Anionic Cyanobiphenyl Surfactants. Langmuir, 2015, 31, 13040-13047.	1.6	O
60	Solid mesostructured polymer–surfactant films at the air–liquid interface. Advances in Colloid and Interface Science, 2015, 222, 564-572.	7.0	3
61	Supercritical carbon dioxide: a solvent like no other. Beilstein Journal of Organic Chemistry, 2014, 10, 1878-1895.	1.3	106
62	Superhydrophobic surfaces with low and high adhesion made from mixed (hydrocarbon and) Tj ETQq0 0 0 rgBT Physics, 2014, 52, 782-788.	/Overlock 2.4	10 Tf 50 467 18
63	Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 2014, 292, 3013-3023.	1.0	39
64	Effects of small ionic amphiphilic additives on reverse microemulsion morphology. Journal of Colloid and Interface Science, 2014, 421, 56-63.	5.0	17
65	Surfactants and Nanoscience. , 2014, , 135-157.		37
66	Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering. Journal of Colloid and Interface Science, 2014, 435, 112-118.	5.0	8
67	Low-Surface Energy Surfactants with Branched Hydrocarbon Architectures. Langmuir, 2014, 30, 3413-3421.	1.6	74
68	Shape Transitions in Supercritical CO ₂ Microemulsions Induced by Hydrotropes. Langmuir, 2014, 30, 96-102.	1.6	19
69	Hyperbranched Hydrocarbon Surfactants Give Fluorocarbon-like Low Surface Energies. Langmuir, 2014, 30, 6057-6063.	1.6	53
70	Sticky superhydrophobic hard nanofibers from soft matter. RSC Advances, 2014, 4, 35708-35716.	1.7	10
71	Magnetically-responsive electrophoretic silica organosols. Journal of Colloid and Interface Science, 2014, 426, 252-255.	5.0	8
72	Interaction between Surfactants and Colloidal Latexes in Nonpolar Solvents Studied Using Contrast-Variation Small-Angle Neutron Scattering. Langmuir, 2014, 30, 3422-3431.	1.6	25

#	Article	IF	CITATIONS
73	Directed assembly of optoelectronically active alkyl–΀-conjugated molecules by adding n-alkanes or π-conjugated species. Nature Chemistry, 2014, 6, 690-696.	6.6	92
74	Incorporation of gold nanoparticles into pH responsive mixed microgel systems. Mediterranean Journal of Chemistry, 2014, 1, 259-272.	0.3	3
75	Cylinder to sphere transition in reverse microemulsions: The effect of hydrotropes. Journal of Colloid and Interface Science, 2013, 392, 304-310.	5.0	25
76	Controlling colloid charge in nonpolar liquids with surfactants. Physical Chemistry Chemical Physics, 2013, 15, 424-439.	1.3	89
77	Ion specific effects with CO2-philic surfactants. Current Opinion in Colloid and Interface Science, 2013, 18, 40-46.	3.4	25
78	A highly hydrophobic anionic surfactant at oil–water, water–polymer and oil–polymer interfaces: Implications for spreading coefficients, polymer interactions and microencapsulation via internal phase separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1048-1059.	2.3	17
79	Stimuli-responsive surfactants. Soft Matter, 2013, 9, 2365.	1.2	258
80	Dication magnetic ionic liquids with tuneable heteroanions. Chemical Communications, 2013, 49, 2765.	2.2	62
81	Charged microcapsules for controlled release of hydrophobic actives. Part I: encapsulation methodology and interfacial properties. Soft Matter, 2013, 9, 1468-1477.	1.2	26
82	Nanostructures in Water-in-CO ₂ Microemulsions Stabilized by Double-Chain Fluorocarbon Solubilizers. Langmuir, 2013, 29, 7618-7628.	1.6	28
83	New catanionic surfactants with ionic liquid properties. Journal of Colloid and Interface Science, 2013, 395, 185-189.	5.0	65
84	Evidence for a Critical Micelle Concentration of Surfactants in Hydrocarbon Solvents. Langmuir, 2013, 29, 3252-3258.	1.6	64
85	Properties of New Magnetic Surfactants. Langmuir, 2013, 29, 3246-3251.	1.6	75
86	Magnetic emulsions with responsive surfactants. Soft Matter, 2012, 8, 7545.	1.2	56
87	Design principles for supercritical CO2 viscosifiers. Soft Matter, 2012, 8, 7044.	1.2	63
88	Effective and Efficient Surfactant for CO ₂ Having Only Short Fluorocarbon Chains. Langmuir, 2012, 28, 10988-10996.	1.6	31
89	Amphiphiles for supercritical CO2. Biochimie, 2012, 94, 94-100.	1.3	31
90	Magnetizing DNA and Proteins Using Responsive Surfactants. Advanced Materials, 2012, 24, 6244-6247.	11.1	68

#	Article	IF	CITATIONS
91	Hybrid CO ₂ -philic Surfactants with Low Fluorine Content. Langmuir, 2012, 28, 6299-6306.	1.6	56
92	Effects of Structure Variation on Solution Properties of Hydrotropes: Phenyl versus Cyclohexyl Chain Tips. Langmuir, 2012, 28, 9332-9340.	1.6	13
93	Anionic Surfactant Ionic Liquids with 1-Butyl-3-methyl-imidazolium Cations: Characterization and Application. Langmuir, 2012, 28, 2502-2509.	1.6	189
94	Microemulsions with CO2 as a solvent. Current Opinion in Colloid and Interface Science, 2012, 17, 266-273.	3.4	35
95	Microemulsions as tunable nanomagnets. Soft Matter, 2012, 8, 11609.	1.2	37
96	Growth of Mesoporous Silica Nanoparticles Monitored by Time-Resolved Small-Angle Neutron Scattering. Langmuir, 2012, 28, 4425-4433.	1.6	53
97	Magnetic Control over Liquid Surface Properties with Responsive Surfactants. Angewandte Chemie - International Edition, 2012, 51, 2414-2416.	7.2	181
98	CO ₂ : a wild solvent, tamed. Physical Chemistry Chemical Physics, 2011, 13, 1276-1289.	1.3	40
99	Polymer-induced recovery of nanoparticles from microemulsions. Physical Chemistry Chemical Physics, 2011, 13, 3059-3063.	1.3	5
100	Low Fluorine Content CO ₂ -philic Surfactants. Langmuir, 2011, 27, 10562-10569.	1.6	56
101	Super-Efficient Surfactant for Stabilizing Water-in-Carbon Dioxide Microemulsions. Langmuir, 2011, 27, 5772-5780.	1.6	52
102	Anionic Surfactants and Surfactant Ionic Liquids with Quaternary Ammonium Counterions. Langmuir, 2011, 27, 4563-4571.	1.6	145
103	Action of hydrotropes and alkyl-hydrotropes. Soft Matter, 2011, 7, 5917.	1.2	93
104	Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures. Journal of Colloid and Interface Science, 2011, 363, 490-496.	5.0	58
105	Photoreactive Surfactants: A Facile and Clean Route to Oxide and Metal Nanoparticles in Reverse Micelles. Langmuir, 2011, 27, 9277-9284.	1.6	33
106	Are Hydrotropes Distinct from Surfactants?. Langmuir, 2011, 27, 12346-12353.	1.6	86
107	Separating nanoparticles from microemulsions. Journal of Colloid and Interface Science, 2011, 354, 624-629.	5.0	27
108	[R4N] [AOT]: A Surfactant Ionic Liquid as a Mild Glycosylation Promoter. Journal of Carbohydrate Chemistry, 2011, 30, 486-497.	0.4	17

#	Article	IF	CITATIONS
109	Stimulus-Responsive Heteroaggregation of Colloidal Dispersions: Reversible Systems and Composite Materials. Polymers, 2011, 3, 1036-1050.	2.0	17
110	CO2-Soluble Surfactants for Improved Mobility Control. , 2010, , .		16
111	Role of the Succinate Skeleton in the Disorder–Order Transition of AOT and Its Analogous Molecules: Detection by Infrared Absorption Spectra of the Configurations Arising from the Difference in Torsion Angles of the Succinate Skeleton. Bulletin of the Chemical Society of Japan, 2010. 83. 651-659.	2.0	2
112	Rich Selfâ€Assembly Behavior from a Simple Amphiphile. ChemPhysChem, 2010, 11, 3074-3077.	1.0	26
113	Recovery and Reuse of Nanoparticles by Tuning Solvent Quality. ChemSusChem, 2010, 3, 339-341.	3.6	8
114	Recycling Functional Colloids and Nanoparticles. Chemistry - A European Journal, 2010, 16, 11784-11790.	1.7	58
115	Bidisperse colloids: Nanoparticles and microemulsions in coexistence. Journal of Colloid and Interface Science, 2010, 344, 447-450.	5.0	4
116	A two-step model for surfactant adsorption at solid surfaces. Journal of Colloid and Interface Science, 2010, 346, 424-428.	5.0	74
117	Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science, 2010, 350, 443-446.	5.0	14
118	Rod-Like Micelles Thicken CO ₂ . Langmuir, 2010, 26, 83-88.	1.6	83
119	Controlling Gold Nanoparticle Stability with Triggerable Microgels. Langmuir, 2010, 26, 11779-11783.	1.6	11
120	Hydrocarbon Metallosurfactants for CO ₂ . Langmuir, 2010, 26, 4732-4737.	1.6	16
121	Universal Surfactant for Water, Oils, and CO ₂ . Langmuir, 2010, 26, 13861-13866.	1.6	83
122	Separation and Purification of Nanoparticles in a Single Step. Langmuir, 2010, 26, 6989-6994.	1.6	41
123	Recovery of Nanoparticles Made Easy. Langmuir, 2010, 26, 3794-3797.	1.6	28
124	Scaling the Structure Factors of Protein Limit Colloidâ^'Polymer Mixtures. Langmuir, 2010, 26, 1630-1634.	1.6	12
125	Adsorption and Desorption of Cationic Surfactants onto Silica from Toluene Studied by ATR-FTIR. Langmuir, 2010, 26, 671-677.	1.6	10
126	Microemulsion-based organogels containing inorganic nanoparticles. Soft Matter, 2010, 6, 1291.	1.2	19

#	Article	IF	CITATIONS
127	Fluorinated microemulsions as reaction media for fluorous nanoparticles. Soft Matter, 2010, 6, 971.	1.2	9
128	Recovery of gold nanoparticles using pH-sensitive microgels. Soft Matter, 2010, 6, 2050.	1.2	12
129	Triâ€Chain Hydrocarbon Surfactants as Designed Micellar Modifiers for Supercritical CO ₂ . Angewandte Chemie - International Edition, 2009, 48, 4993-4995.	7.2	62
130	Cerium oxide nanoparticles prepared in self-assembled systems. Advances in Colloid and Interface Science, 2009, 147-148, 56-66.	7.0	117
131	Soft matter at ISIS. Materials Today, 2009, 12, 92-99.	8.3	2
132	Fluorocarbon–hydrocarbon incompatibility in micellar polymerizations. Journal of Colloid and Interface Science, 2009, 330, 437-442.	5.0	7
133	Design and optimization of a new self-nanoemulsifying drug delivery system. Journal of Colloid and Interface Science, 2009, 330, 443-448.	5.0	317
134	Low energy methods of phase separation in colloidal dispersions and microemulsions. Advances in Colloid and Interface Science, 2009, 149, 39-46.	7.0	32
135	Surfactant Aggregation in CO ₂ /Heptane Solvent Mixtures. Langmuir, 2009, 25, 12909-12913.	1.6	16
136	Reverse Water-in-Fluorocarbon Microemulsions Stabilized by New Polyhydroxylated Nonionic Fluorinated Surfactants. Langmuir, 2009, 25, 8919-8926.	1.6	9
137	Adsorption and Desorption of Nonionic Surfactants on Silica from Toluene Studied by ATR-FTIR. Langmuir, 2009, 25, 9785-9791.	1.6	28
138	Testing the Scaling Behavior of Microemulsionâ^'Polymer Mixtures. Langmuir, 2009, 25, 3944-3952.	1.6	21
139	lonic Liquid Tunes Microemulsion Curvature. Langmuir, 2009, 25, 2055-2059.	1.6	43
140	Formation and stability of nanoemulsions with mixed ionic–nonionic surfactants. Physical Chemistry Chemical Physics, 2009, 11, 9772.	1.3	75
141	Time-resolved small-angle neutron scattering as a lamellar phase evolves into a microemulsion. Soft Matter, 2009, 5, 2125.	1.2	18
142	Control over Microemulsions with Solvent Blends. Langmuir, 2009, 25, 2743-2748.	1.6	24
143	Reversible light-induced critical separation. Soft Matter, 2009, 5, 78-80.	1.2	47
144	Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures. Journal of Colloid and Interface Science, 2008, 318, 244-251.	5.0	65

#	Article	IF	CITATIONS
145	Light-sensitive lamellar phases. Journal of Colloid and Interface Science, 2008, 322, 611-616.	5.0	5
146	Surfactant-based gels. Advances in Colloid and Interface Science, 2008, 144, 66-74.	7.0	108
147	Formation of Surfactant-Stabilized Silica Organosols. Langmuir, 2008, 24, 12793-12797.	1.6	18
148	Stabilization of CeO2 nanoparticles in a CO2 rich solvent. Chemical Communications, 2008, , 5628.	2.2	10
149	Photo-labile lamellar phases. Soft Matter, 2008, 4, 1215.	1.2	13
150	Photorecovery of Nanoparticles from an Organic Solvent. Langmuir, 2008, 24, 1829-1832.	1.6	18
151	Small-Angle Neutron Scattering Study of Microemulsionâ^Polymer Mixtures in the Protein Limit. Langmuir, 2008, 24, 3053-3060.	1.6	20
152	Nanoemulsions Prepared by a Two-Step Low-Energy Process. Langmuir, 2008, 24, 6092-6099.	1.6	92
153	Effect of Solvent Quality on Aggregate Structures of Common Surfactants. Langmuir, 2008, 24, 12235-12240.	1.6	59
154	Controlling Aggregation of Nonionic Surfactants Using Mixed Glycol Media. Langmuir, 2007, 23, 4199-4202.	1.6	36
155	Colloid–polymer mixtures in the protein limit. Soft Matter, 2007, 3, 155-167.	1.2	84
156	Light-induced flocculation of gold nanoparticles. Chemical Communications, 2007, , 3912.	2.2	36
157	Hydrocarbon Surfactants for CO2: An Impossible Dream?. Australian Journal of Chemistry, 2007, 60, 630.	0.5	15
158	Three-component microemulsions formed using pH-degradable 1,3-dioxolane alkyl ethoxylate surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 394-403.	2.3	9
159	De-gassed water and surfactant-free emulsions: History, controversy, and possible applications. Advances in Colloid and Interface Science, 2007, 134-135, 89-95.	7.0	15
160	Generation of metal oxide nanoparticles in optimised microemulsions. Journal of Colloid and Interface Science, 2007, 312, 68-75.	5.0	37
161	Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 2007, 314, 230-235.	5.0	400
162	Surface and micelle properties of novel multi-dentate surfactants. Journal of Colloid and Interface Science, 2007, 314, 707-711.	5.0	11

#	Article	IF	Citations
163	SANS studies of the effects of surfactant head group on aggregation properties in water/glycol and pure glycol systems. Journal of Colloid and Interface Science, 2007, 315, 714-720.	5.0	38
164	Glycerol-induced swollen lamellar phases with siloxane copolymers. Journal of Colloid and Interface Science, 2007, 316, 723-729.	5.0	15
165	Photoresponsive Surfactants in Microgel Dispersions. Langmuir, 2006, 22, 101-105.	1.6	48
166	Photoinduced Phase Separation. Journal of the American Chemical Society, 2006, 128, 1468-1469.	6.6	27
167	Surfactants for CO2. Langmuir, 2006, 22, 9832-9842.	1.6	115
168	Fluorosurfactants at Structural Extremes:Â Adsorption and Aggregation. Langmuir, 2006, 22, 2034-2038.	1.6	29
169	Photosensitive gelatin. Chemical Communications, 2006, , 4407.	2.2	15
170	Photo-destructible Surfactants in Microemulsions. , 2006, , 106-110.		9
171	Electron Density Matching as a Guide to Surfactant Design. Langmuir, 2006, 22, 963-968.	1.6	26
172	Unexpected Adsorption Behavior of Nonionic Surfactants from Glycol Solvents. Langmuir, 2006, 22, 11187-11192.	1.6	26
173	Alternative non-aqueous water-miscible solvents for surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 134-142.	2.3	31
174	Characterization of nano-cerias synthesized in microemulsions by N2 sorptiometry and electron microscopy. Journal of Colloid and Interface Science, 2006, 302, 501-508.	5.0	35
175	Application of a multi-dentate amphiphilic compound to transfer silver nanoparticles into an organic solvent. Journal of Colloid and Interface Science, 2006, 304, 388-393.	5.0	8
176	Branched trichain sulfosuccinates as novel water in CO2 dispersants. Colloid and Polymer Science, 2006, 284, 1333-1337.	1.0	44
177	Recent advances in nanoparticle synthesis with reversed micelles. Advances in Colloid and Interface Science, 2006, 128-130, 5-15.	7.0	536
178	Designed CO2-Philes Stabilize Water-in-Carbon Dioxide Microemulsions. Angewandte Chemie - International Edition, 2006, 45, 3675-3677.	7.2	109
179	Photodestructible Vesicles. Langmuir, 2006, 22, 851-853.	1.6	27
180	Photo-destructible Surfactants in Microemulsions. , 2006, , 106-110.		1

#	Article	IF	CITATIONS
181	Ionic Liquid-in-Oil Microemulsions. Journal of the American Chemical Society, 2005, 127, 7302-7303.	6.6	371
182	Self-assembly of light-sensitive surfactants. Soft Matter, 2005, 1, 338.	1.2	257
183	Photo-stabilised microemulsions. Chemical Communications, 2005, , 2785.	2.2	20
184	What Is So Special about Aerosol-OT? Part IV. Phenyl-Tipped Surfactants. Langmuir, 2005, 21, 10021-10027.	1.6	42
185	Self-assembly in green solvents. Physical Chemistry Chemical Physics, 2005, 7, 1352.	1.3	62
186	Microemulsion-Based Synthesis of CeO2Powders with High Surface Area and High-Temperature Stabilities. Langmuir, 2004, 20, 11223-11233.	1.6	142
187	Conductivity of water-in-oil microemulsions stabilized by mixed surfactants. Journal of Colloid and Interface Science, 2004, 274, 268-276.	5.0	89
188	Conductivity of mixed surfactant water-in-oil microemulsions. Physical Chemistry Chemical Physics, 2004, 6, 1597.	1.3	16
189	Adsorption kinetics of ammonium perfluorononanoate at the air–water interface. Physical Chemistry Chemical Physics, 2004, 6, 5061-5065.	1.3	20
190	A photo-responsive organogel. Chemical Communications, 2004, , 2608-2609.	2.2	133
191	Adsorption of Ionic Surfactants at an Expanding Airâ^Water Interface. Langmuir, 2004, 20, 4436-4445.	1.6	60
192	Hybrid Fluorocarbonâ^'Hydrocarbon CO2-philic Surfactants. 1. Synthesis and Properties of Aqueous Solutions. Langmuir, 2004, 20, 9953-9959.	1.6	45
193	Hybrid Fluorocarbonâ^'Hydrocarbon CO2-philic Surfactants. 2. Formation and Properties of Water-in-CO2Microemulsions. Langmuir, 2004, 20, 9960-9967.	1.6	49
194	Light-Sensitive Microemulsions. Langmuir, 2004, 20, 1120-1125.	1.6	60
195	Surfactant-Free "Emulsions―Generated by Freezeâ^'Thaw. Langmuir, 2004, 20, 5673-5678.	1.6	30
196	UV Causes Dramatic Changes in Aggregation with Mixtures of Photoactive and Inert Surfactants. Langmuir, 2004, 20, 6120-6126.	1.6	20
197	Surfactant-free "emulsions" generated by freeze-thaw. Langmuir, 2004, 20, 5673-8.	1.6	1
198	Micellization of economically viable surfactants in CO2. Journal of Colloid and Interface Science, 2003, 258, 367-373.	5.0	37

#	Article	IF	CITATIONS
199	Neutron reflection and small-angle neutron scattering studies of a fluorocarbon telomer surfactant. Journal of Colloid and Interface Science, 2003, 261, 184-190.	5.0	7
200	Applications of polymerizable surfactants. Advances in Colloid and Interface Science, 2003, 100-102, 137-152.	7.0	134
201	Fluorinated surfactants in supercritical CO2. Current Opinion in Colloid and Interface Science, 2003, 8, 267-273.	3.4	58
202	Investigation of Microstructure and Dynamics of Novel Gemini Surfactant Micelles by Small-Angle Neutron Scattering (SANS) and NMR Self-Diffusion. Langmuir, 2003, 19, 18-23.	1.6	25
203	pH Switching for the Selective Extraction of Metal lons into Supercritical CO2. Langmuir, 2003, 19, 3145-3150.	1.6	24
204	Properties of Mixed Alcoholâ^'Zwitterionic Surfactant Films in Quaternary Water-in-Oil Microemulsions. Langmuir, 2003, 19, 7219-7225.	1.6	10
205	Measurement of the Dynamic Surface Excess of the Nonionic Surfactant C8E4OMe by Neutron Reflection and Ellipsometry. Langmuir, 2003, 19, 5960-5962.	1.6	19
206	Concentrated Polymerized Cationic Surfactant Phasesâ€. Langmuir, 2003, 19, 6357-6362.	1.6	31
207	Determination of the Dynamic Surface Excess of a Homologous Series of Cationic Surfactants by Ellipsometry. Langmuir, 2003, 19, 1244-1248.	1.6	32
208	Dynamic Surface Excesses of Fluorocarbon Surfactantsâ€. Langmuir, 2003, 19, 7734-7739.	1.6	18
209	Photoresponsive Microemulsions. Langmuir, 2003, 19, 6579-6581.	1.6	59
210	Microemulsion Formation in 1,1,1,2-Tetrafluoroethane (R134a). Langmuir, 2003, 19, 8715-8720.	1.6	21
211	Compositions of Mixed Surfactant Layers in Microemulsions Determined by Small-Angle Neutron Scattering. Langmuir, 2003, 19, 2560-2567.	1.6	43
212	Design and Performance of Surfactants for Carbon Dioxide. ACS Symposium Series, 2003, , 285-308.	0.5	10
213	Effects of Fluorocarbon Surfactant Chain Structure on Stability of Water-in-Carbon Dioxide Microemulsions. Links between Aqueous Surface Tension and Microemulsion Stability. Langmuir, 2002, 18, 3014-3017.	1.6	90
214	Properties of a Stilbene-Containing Gemini Photosurfactant:  Light-Triggered Changes in Surface Tension and Aggregation. Langmuir, 2002, 18, 7837-7844.	1.6	104
215	What Is So Special about Aerosol-OT? Part IIIGlutaconate versus Sulfosuccinate Headgroups and Oilâ°'Water Interfacial Tensions. Langmuir, 2002, 18, 1505-1510.	1.6	37
216	Formation of BaSO4Nanoparticles in Microemulsions with Polymerized Surfactant Shells. Langmuir, 2002, 18, 5023-5026.	1.6	51

#	Article	IF	CITATIONS
217	Interaction between a Novel Gemini Surfactant and Cyclodextrin: NMR and Surface Tension Studies. Journal of Colloid and Interface Science, 2002, 246, 191-202.	5.0	47
218	Adsorption Properties of Novel Gemini Surfactants with Nonidentical Head Groups. Journal of Colloid and Interface Science, 2002, 247, 447-455.	5.0	58
219	Interactions between a Nonionic Gemini Surfactant and Cyclodextrins Investigated by Small-Angle Neutron Scattering. Journal of Colloid and Interface Science, 2002, 255, 403-409.	5.0	39
220	Surfactant adsorption dynamics. International Reviews in Physical Chemistry, 2001, 20, 357-386.	0.9	28
221	Micellization of Hydrocarbon Surfactants in Supercritical Carbon Dioxide. Journal of the American Chemical Society, 2001, 123, 988-989.	6.6	167
222	Polymerization of Cationic Surfactant Phases. Langmuir, 2001, 17, 5388-5397.	1.6	68
223	The Remarkable "Flipâ^'Flop―Self-Assembly of a Diblock Copolymer in Aqueous Solution. Macromolecules, 2001, 34, 1503-1511.	2.2	104
224	Fluorinated Nonionic Surfactants Bearing Either CF3â^' or Hâ^'CF2â^' Terminal Groups:Â Adsorption at the Surface of Aqueous Solutions. Langmuir, 2001, 17, 7873-7878.	1.6	72
225	Water in Carbon Dioxide Macroemulsions and Miniemulsions with a Hydrocarbon Surfactant. Langmuir, 2001, 17, 7191-7193.	1.6	67
226	Phosphate Surfactants for Water-in-CO2Microemulsions. Langmuir, 2001, 17, 7948-7950.	1.6	42
227	Polymerization of Cationic Surfactant Films in Microemulsions. Journal of Dispersion Science and Technology, 2001, 22, 597-607.	1.3	7
228	Surfactant adsorption dynamics. International Reviews in Physical Chemistry, 2001, 20, 357-386.	0.9	5
229	Droplet interfacial structure studied by SANS contrast variation. Journal of Applied Crystallography, 2000, 33, 749-752.	1.9	11
230	Vibrational spectra of Aerosol-OT homologous sodium dialkylsulfosuccinates â€" normal coordinate analyses of sodium diethylsulfosuccinate and sodium dimethylsulfosuccinate and their application to longer homologues. Vibrational Spectroscopy, 2000, 23, 151-168.	1.2	6
231	Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface. Advances in Colloid and Interface Science, 2000, 85, 103-144.	7.0	742
232	Adsorption of Ionic Surfactants at the Airâ^'Solution Interface. Langmuir, 2000, 16, 4511-4518.	1.6	226
233	What Is So Special about Aerosol-OT? 1. Aqueous Systemsâ€. Langmuir, 2000, 16, 8733-8740.	1.6	149
234	Fluoro-surfactants at air/water and water/CO2 interfaces. Physical Chemistry Chemical Physics, 2000, 2, 5235-5242.	1.3	90

#	Article	IF	CITATIONS
235	What Is So Special about Aerosol-OT? 2. Microemulsion Systemsâ€. Langmuir, 2000, 16, 8741-8748.	1.6	189
236	Control over Phase Curvature Using Mixtures of Polymerizable Surfactants. Chemistry of Materials, 2000, 12, 3533-3537.	3.2	21
237	Adsorption and micellisation of partially- and fully-fluorinated surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 33-48.	2.3	61
238	Raman scattering spectra of Aerosol-OT homologous sodium dialkylsulfosuccinates and the environment of their hydrophobic chains. Colloid and Polymer Science, 1999, 277, 947-956.	1.0	2
239	Infrared absorption spectra of Aerosol-OT homologous sodium dialkylsulfosuccinates and the effect of crystal polymorphism on the environment of the succinate segment. Colloid and Polymer Science, 1999, 277, 1051-1057.	1.0	2
240	Interfacial Compositions and Phase Structures in Mixed Surfactant Microemulsions. Langmuir, 1999, 15, 5271-5278.	1.6	77
241	Oligo- and polyethylene glycols in water-in-oil microemulsions. A SANS study. Physical Chemistry Chemical Physics, 1999, 1, 2521-2525.	1.3	15
242	Raman and IR spectroscopic studies of the interaction between counterion and polar group in self-assembled systems of AOT-homologous "sodium dialkyl sulfosuccinates''. Physical Chemistry Chemical Physics, 1999, 1, 4395-4407.	1.3	16
243	Effects of Hydrophobic Chain Structure on Adsorption of Fluorocarbon Surfactants with either CF3â°' or Hâ°'CF2â°' Terminal Groups. Langmuir, 1999, 15, 7591-7599.	1.6	67
244	Surface light scattering from cationic surfactant films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143, 261-271.	2.3	9
245	Mixing in cationic surfactant films studied by small-angle neutron scattering. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2143-2150.	1.7	36
246	Dynamic Surface Tensions and Micelle Structures of Dichained Phosphatidylcholine Surfactant Solutions. Langmuir, 1998, 14, 5719-5724.	1.6	46
247	Breakdown Kinetics of Fluorocarbon Micelles Studied by Stopped-Flow Small-Angle X-ray Scattering. Langmuir, 1998, 14, 1937-1939.	1.6	16
248	Evidence for Activationâ^'Diffusion Controlled Dynamic Surface Tension with a Nonionic Surfactant. Langmuir, 1998, 14, 979-981.	1.6	72
249	Water-in-CO2Microemulsions Studied by Small-Angle Neutron Scattering. Langmuir, 1997, 13, 6980-6984.	1.6	131
250	Photoexcited fullerene species in Triton-X100 micelles. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 4131-4136.	1.7	17
251	Invasive and Noninvasive Measurements of Dynamic Surface Tensions. Langmuir, 1997, 13, 5808-5810.	1.6	31
252	Droplet Structure in Phosphocholine Microemulsions. Langmuir, 1997, 13, 2490-2493.	1.6	18

#	Article	IF	CITATIONS
253	Properties of Phosphocholine Microemulsions and the Film Rigidity Model. Langmuir, 1997, 13, 3289-3294.	1.6	22
254	Rigidities of Cationic Surfactant Films in Microemulsions. Journal of Physical Chemistry B, 1997, 101, 944-948.	1.2	20
255	Films of di-chained surfactants in microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 128, 209-215.	2.3	11
256	Dynamic Surface Tensions of Nonionic Surfactant Solutions. Journal of Colloid and Interface Science, 1997, 188, 423-430.	5.0	129
257	Microemulsions with Didodecyldimethylammonium Bromide Studied by Neutron Contrast Variation. Journal of Colloid and Interface Science, 1997, 190, 449-455.	5.0	28
258	Properties of Surfactant Monolayers Studied by Surface Light Scattering. Langmuir, 1996, 12, 2303-2307.	1.6	41
259	Droplet Structure in a Water-in-CO2 Microemulsion. Langmuir, 1996, 12, 1423-1424.	1.6	110
260	Properties of New Glucamide Surfactants. Langmuir, 1996, 12, 2701-2705.	1.6	71
261	Mixing of Alkanes with Surfactant Monolayers in Microemulsions. Langmuir, 1996, 12, 3876-3880.	1.6	60
262	Interfacial Properties of a Catanionic Surfactant. Langmuir, 1996, 12, 2706-2711.	1.6	70
263	Remarkable stability of C60˙–in micelles. Chemical Communications, 1996, , 901-902.	2.2	12
264	Structure of Reversed Micelles Formed by Metal Salts of Bis(ethylhexyl) Phosphoric Acid. Langmuir, 1996, 12, 1483-1489.	1.6	55
265	Structure in microemulsions of di-chained surfactants. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 65.	1.7	33
266	Micelles of asymmetric chain catanionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 117, 215-225.	2.3	35
267	Nanoparticle and polymer synthesis in microemulsions. Current Opinion in Colloid and Interface Science, 1996, 1, 800-805.	3.4	120
268	Preparation of colloidal cobalt using reversed micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 119, 123-131.	2.3	26
269	Measurement of inter-particle forces from the osmotic pressure of partially frozen dispersions. Journal of Physics Condensed Matter, 1996, 8, 9531-9536.	0.7	2
270	Structure and photophysics in C60-micellar solutions. Chemical Physics Letters, 1995, 245, 571-577.	1.2	60

#	Article	IF	Citations
271	Formation of PbS nanoclusters using reversed micelles of lead and sodium Aerosol-OT. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 101, 63-76.	2.3	41
272	Surface Light Scattering from Mixed Surfactant-Oil Monolayers. Langmuir, 1995, 11, 4636-4638.	1.6	11
273	Lamellar Aggregates in the L2 Phase of a Nonionic Silicone Surfactant (L77-OH). Langmuir, 1994, 10, 2213-2218.	1.6	14
274	Solubilisation of C60 in aqueous micellar solution. Journal of the Chemical Society Chemical Communications, 1994, , 173.	2.0	71
275	Water-induced structural changes within the L2phase of didodecyldimethylammonium bromide–cyclohexane–water systems. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 487-492.	1.7	45
276	Structure of cobalt Aerosol-OT reversed micelles studied by small-angle scattering methods. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2497.	1.7	26
277	Effect of Counterion Radius on Surfactant Properties in Winsor II Microemulsion Systems. Langmuir, 1994, 10, 1650-1653.	1.6	28
278	Properties of a Dichained "Sugar Surfactant". Langmuir, 1994, 10, 4429-4433.	1.6	62
279	Pressure-induced structural changes in water-in-propane microemulsions. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3121.	1.7	31
280	Structures of metal bis(2-ethylhexylsulfosuccinate) aggregates in cyclohexane. The Journal of Physical Chemistry, 1993, 97, 1459-1463.	2.9	128
281	Effects of solidification of the oil phase on the structure of colloidal dispersions in cyclohexane. Langmuir, 1993, 9, 903-911.	1.6	15
282	Water-in-oil microemulsions formed by ammonium and tetrapropylammonium salts of Aerosol OT. Langmuir, 1993, 9, 2820-2824.	1.6	61
283	Variation of surfactant counterion and its effect on the structure and properties of Aerosol-OT-based water-in-oil microemulsions. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 461.	1.7	164
284	Small-angle neutron scattering from dilute didodecyldimethylammonium bromide water-in-oil microemulsions. Evidence for polymer-like aggregates. Langmuir, 1992, 8, 1503-1506.	1.6	37
285	Small-angle neutron scattering from novel bis-2- ethylhexylsulphosuccinate microemulsions: evidence for non-spherical structures. Physica B: Condensed Matter, 1992, 180-181, 555-557.	1.3	12
286	Rotational dynamics of AOT reversed micelles in near-critical and supercritical alkanes. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 1899.	1.7	55
287	Structural studies of microemulsions stabilised by aerosol-OT. Advances in Colloid and Interface Science, 1991, 36, 1-31.	7.0	100
288	Steric Interactions between Microemulsion Droplets in a Plastic-Crystalline Phase., 1991,, 469-476.		0

#	Article	IF	CITATIONS
289	Structure and interactions of microemulsions in a plastic-crystalline phase. Chemical Physics Letters, 1990, 166, 153-158.	1.2	8
290	Influence of pressure and temperature on microemulsion stability. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 511.	1.7	57
291	Scattering studies of microemulsions in low-density alkanes. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2883.	1.7	100
292	Surfactant Aggregation and Adsorption at Interfaces. , 0, , 50-76.		13
293	Interrogation of a dynamic multi-catalyst ensemble in asymmetric catalysis. Faraday Discussions, 0, 145, 27-47.	1.6	8