
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/338244/publications.pdf Version: 2024-02-01

LULIAN FASTOR

#	Article	IF	CITATIONS
1	Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface. Advances in Colloid and Interface Science, 2000, 85, 103-144.	14.7	742
2	Recent advances in nanoparticle synthesis with reversed micelles. Advances in Colloid and Interface Science, 2006, 128-130, 5-15.	14.7	536
3	Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 2007, 314, 230-235.	9.4	400
4	Ionic Liquid-in-Oil Microemulsions. Journal of the American Chemical Society, 2005, 127, 7302-7303.	13.7	371
5	Design and optimization of a new self-nanoemulsifying drug delivery system. Journal of Colloid and Interface Science, 2009, 330, 443-448.	9.4	317
6	Stimuli-responsive surfactants. Soft Matter, 2013, 9, 2365.	2.7	258
7	Self-assembly of light-sensitive surfactants. Soft Matter, 2005, 1, 338.	2.7	257
8	Adsorption of Ionic Surfactants at the Airâ^'Solution Interface. Langmuir, 2000, 16, 4511-4518.	3.5	226
9	What Is So Special about Aerosol-OT? 2. Microemulsion Systemsâ€. Langmuir, 2000, 16, 8741-8748.	3.5	189
10	Anionic Surfactant Ionic Liquids with 1-Butyl-3-methyl-imidazolium Cations: Characterization and Application. Langmuir, 2012, 28, 2502-2509.	3.5	189
11	Magnetic Control over Liquid Surface Properties with Responsive Surfactants. Angewandte Chemie - International Edition, 2012, 51, 2414-2416.	13.8	181
12	Micellization of Hydrocarbon Surfactants in Supercritical Carbon Dioxide. Journal of the American Chemical Society, 2001, 123, 988-989.	13.7	167
13	Variation of surfactant counterion and its effect on the structure and properties of Aerosol-OT-based water-in-oil microemulsions. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 461.	1.7	164
14	What Is So Special about Aerosol-OT? 1. Aqueous Systemsâ€. Langmuir, 2000, 16, 8733-8740.	3.5	149
15	Anionic Surfactants and Surfactant Ionic Liquids with Quaternary Ammonium Counterions. Langmuir, 2011, 27, 4563-4571.	3.5	145
16	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	27.5	144
17	Microemulsion-Based Synthesis of CeO2Powders with High Surface Area and High-Temperature Stabilities. Langmuir, 2004, 20, 11223-11233.	3.5	142
18	Foams: From nature to industry. Advances in Colloid and Interface Science, 2017, 247, 496-513.	14.7	141

#	Article	IF	CITATIONS
19	Branched Hydrocarbon Low Surface Energy Materials for Superhydrophobic Nanoparticle Derived Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 660-666.	8.0	138
20	Applications of polymerizable surfactants. Advances in Colloid and Interface Science, 2003, 100-102, 137-152.	14.7	134
21	A photo-responsive organogel. Chemical Communications, 2004, , 2608-2609.	4.1	133
22	Water-in-CO2Microemulsions Studied by Small-Angle Neutron Scattering. Langmuir, 1997, 13, 6980-6984.	3.5	131
23	Dynamic Surface Tensions of Nonionic Surfactant Solutions. Journal of Colloid and Interface Science, 1997, 188, 423-430.	9.4	129
24	Structures of metal bis(2-ethylhexylsulfosuccinate) aggregates in cyclohexane. The Journal of Physical Chemistry, 1993, 97, 1459-1463.	2.9	128
25	Surfactants at the Design Limit. Langmuir, 2015, 31, 8205-8217.	3.5	124
26	Nanoparticle and polymer synthesis in microemulsions. Current Opinion in Colloid and Interface Science, 1996, 1, 800-805.	7.4	120
27	Cerium oxide nanoparticles prepared in self-assembled systems. Advances in Colloid and Interface Science, 2009, 147-148, 56-66.	14.7	117
28	Surfactants for CO2. Langmuir, 2006, 22, 9832-9842.	3.5	115
29	Droplet Structure in a Water-in-CO2 Microemulsion. Langmuir, 1996, 12, 1423-1424.	3.5	110
30	Designed CO2-Philes Stabilize Water-in-Carbon Dioxide Microemulsions. Angewandte Chemie - International Edition, 2006, 45, 3675-3677.	13.8	109
31	Surfactant-based gels. Advances in Colloid and Interface Science, 2008, 144, 66-74.	14.7	108
32	Supercritical carbon dioxide: a solvent like no other. Beilstein Journal of Organic Chemistry, 2014, 10, 1878-1895.	2.2	106
33	The Remarkable "Flipâ^'Flop―Self-Assembly of a Diblock Copolymer in Aqueous Solution. Macromolecules, 2001, 34, 1503-1511.	4.8	104
34	Properties of a Stilbene-Containing Gemini Photosurfactant:  Light-Triggered Changes in Surface Tension and Aggregation. Langmuir, 2002, 18, 7837-7844.	3.5	104
35	Scattering studies of microemulsions in low-density alkanes. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2883.	1.7	100
36	Structural studies of microemulsions stabilised by aerosol-OT. Advances in Colloid and Interface Science, 1991, 36, 1-31.	14.7	100

#	Article	IF	CITATIONS
37	Action of hydrotropes and alkyl-hydrotropes. Soft Matter, 2011, 7, 5917.	2.7	93
38	Nanoemulsions Prepared by a Two-Step Low-Energy Process. Langmuir, 2008, 24, 6092-6099.	3.5	92
39	Directed assembly of optoelectronically active alkyl–Ĩ€-conjugated molecules by adding n-alkanes or Ĩ€-conjugated species. Nature Chemistry, 2014, 6, 690-696.	13.6	92
40	Fluoro-surfactants at air/water and water/CO2 interfaces. Physical Chemistry Chemical Physics, 2000, 2, 5235-5242.	2.8	90
41	Effects of Fluorocarbon Surfactant Chain Structure on Stability of Water-in-Carbon Dioxide Microemulsions. Links between Aqueous Surface Tension and Microemulsion Stability. Langmuir, 2002, 18, 3014-3017.	3.5	90
42	Conductivity of water-in-oil microemulsions stabilized by mixed surfactants. Journal of Colloid and Interface Science, 2004, 274, 268-276.	9.4	89
43	Controlling colloid charge in nonpolar liquids with surfactants. Physical Chemistry Chemical Physics, 2013, 15, 424-439.	2.8	89
44	Are Hydrotropes Distinct from Surfactants?. Langmuir, 2011, 27, 12346-12353.	3.5	86
45	Colloid–polymer mixtures in the protein limit. Soft Matter, 2007, 3, 155-167.	2.7	84
46	Rod-Like Micelles Thicken CO ₂ . Langmuir, 2010, 26, 83-88.	3.5	83
47	Universal Surfactant for Water, Oils, and CO ₂ . Langmuir, 2010, 26, 13861-13866.	3.5	83
48	Magnetic surfactants. Current Opinion in Colloid and Interface Science, 2015, 20, 140-150.	7.4	83
49	Interfacial Compositions and Phase Structures in Mixed Surfactant Microemulsions. Langmuir, 1999, 15, 5271-5278.	3.5	77
50	Formation and stability of nanoemulsions with mixed ionic–nonionic surfactants. Physical Chemistry Chemical Physics, 2009, 11, 9772.	2.8	75
51	Properties of New Magnetic Surfactants. Langmuir, 2013, 29, 3246-3251.	3.5	75
52	A two-step model for surfactant adsorption at solid surfaces. Journal of Colloid and Interface Science, 2010, 346, 424-428.	9.4	74
53	Low-Surface Energy Surfactants with Branched Hydrocarbon Architectures. Langmuir, 2014, 30, 3413-3421.	3.5	74
54	Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. Journal of Colloid and Interface Science, 2015, 455, 179-187.	9.4	73

#	Article	IF	CITATIONS
55	Evidence for Activationâ^'Diffusion Controlled Dynamic Surface Tension with a Nonionic Surfactant. Langmuir, 1998, 14, 979-981.	3.5	72
56	Fluorinated Nonionic Surfactants Bearing Either CF3â´' or Hâ´'CF2â´' Terminal Groups:Â Adsorption at the Surface of Aqueous Solutions. Langmuir, 2001, 17, 7873-7878.	3.5	72
57	Solubilisation of C60 in aqueous micellar solution. Journal of the Chemical Society Chemical Communications, 1994, , 173.	2.0	71
58	Properties of New Glucamide Surfactants. Langmuir, 1996, 12, 2701-2705.	3.5	71
59	Interfacial Properties of a Catanionic Surfactant. Langmuir, 1996, 12, 2706-2711.	3.5	70
60	Polymerization of Cationic Surfactant Phases. Langmuir, 2001, 17, 5388-5397.	3.5	68
61	Magnetizing DNA and Proteins Using Responsive Surfactants. Advanced Materials, 2012, 24, 6244-6247.	21.0	68
62	Noncovalent Magnetic Control and Reversible Recovery of Graphene Oxide Using Iron Oxide and Magnetic Surfactants. ACS Applied Materials & Interfaces, 2015, 7, 2124-2133.	8.0	68
63	Effects of Hydrophobic Chain Structure on Adsorption of Fluorocarbon Surfactants with either CF3â^' or Hâ^'CF2â^' Terminal Groups. Langmuir, 1999, 15, 7591-7599.	3.5	67
64	Water in Carbon Dioxide Macroemulsions and Miniemulsions with a Hydrocarbon Surfactant. Langmuir, 2001, 17, 7191-7193.	3.5	67
65	Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures. Journal of Colloid and Interface Science, 2008, 318, 244-251.	9.4	65
66	New catanionic surfactants with ionic liquid properties. Journal of Colloid and Interface Science, 2013, 395, 185-189.	9.4	65
67	Evidence for a Critical Micelle Concentration of Surfactants in Hydrocarbon Solvents. Langmuir, 2013, 29, 3252-3258.	3.5	64
68	Design principles for supercritical CO2 viscosifiers. Soft Matter, 2012, 8, 7044.	2.7	63
69	Properties of a Dichained "Sugar Surfactant". Langmuir, 1994, 10, 4429-4433.	3.5	62
70	Self-assembly in green solvents. Physical Chemistry Chemical Physics, 2005, 7, 1352.	2.8	62
71	Triâ€Chain Hydrocarbon Surfactants as Designed Micellar Modifiers for Supercritical CO ₂ . Angewandte Chemie - International Edition, 2009, 48, 4993-4995.	13.8	62
72	Dication magnetic ionic liquids with tuneable heteroanions. Chemical Communications, 2013, 49, 2765.	4.1	62

#	Article	IF	CITATIONS
73	Water-in-oil microemulsions formed by ammonium and tetrapropylammonium salts of Aerosol OT. Langmuir, 1993, 9, 2820-2824.	3.5	61
74	Adsorption and micellisation of partially- and fully-fluorinated surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 33-48.	4.7	61
75	Structure and photophysics in C60-micellar solutions. Chemical Physics Letters, 1995, 245, 571-577.	2.6	60
76	Mixing of Alkanes with Surfactant Monolayers in Microemulsions. Langmuir, 1996, 12, 3876-3880.	3.5	60
77	Adsorption of Ionic Surfactants at an Expanding Airâ^'Water Interface. Langmuir, 2004, 20, 4436-4445.	3.5	60
78	Light-Sensitive Microemulsions. Langmuir, 2004, 20, 1120-1125.	3.5	60
79	Photoresponsive Microemulsions. Langmuir, 2003, 19, 6579-6581.	3.5	59
80	Effect of Solvent Quality on Aggregate Structures of Common Surfactants. Langmuir, 2008, 24, 12235-12240.	3.5	59
81	Adsorption Properties of Novel Gemini Surfactants with Nonidentical Head Groups. Journal of Colloid and Interface Science, 2002, 247, 447-455.	9.4	58
82	Fluorinated surfactants in supercritical CO2. Current Opinion in Colloid and Interface Science, 2003, 8, 267-273.	7.4	58
83	Recycling Functional Colloids and Nanoparticles. Chemistry - A European Journal, 2010, 16, 11784-11790.	3.3	58
84	Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures. Journal of Colloid and Interface Science, 2011, 363, 490-496.	9.4	58
85	Influence of pressure and temperature on microemulsion stability. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 511.	1.7	57
86	Low Fluorine Content CO ₂ -philic Surfactants. Langmuir, 2011, 27, 10562-10569.	3.5	56
87	Magnetic emulsions with responsive surfactants. Soft Matter, 2012, 8, 7545.	2.7	56
88	Hybrid CO ₂ -philic Surfactants with Low Fluorine Content. Langmuir, 2012, 28, 6299-6306.	3.5	56
89	Rotational dynamics of AOT reversed micelles in near-critical and supercritical alkanes. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 1899.	1.7	55
90	Structure of Reversed Micelles Formed by Metal Salts of Bis(ethylhexyl) Phosphoric Acid. Langmuir, 1996, 12, 1483-1489.	3.5	55

#	Article	IF	CITATIONS
91	Growth of Mesoporous Silica Nanoparticles Monitored by Time-Resolved Small-Angle Neutron Scattering. Langmuir, 2012, 28, 4425-4433.	3.5	53
92	Hyperbranched Hydrocarbon Surfactants Give Fluorocarbon-like Low Surface Energies. Langmuir, 2014, 30, 6057-6063.	3.5	53
93	Super-Efficient Surfactant for Stabilizing Water-in-Carbon Dioxide Microemulsions. Langmuir, 2011, 27, 5772-5780.	3.5	52
94	Formation of BaSO4Nanoparticles in Microemulsions with Polymerized Surfactant Shells. Langmuir, 2002, 18, 5023-5026.	3.5	51
95	Hybrid Fluorocarbonâ^'Hydrocarbon CO2-philic Surfactants. 2. Formation and Properties of Water-in-CO2Microemulsions. Langmuir, 2004, 20, 9960-9967.	3.5	49
96	Photoresponsive Surfactants in Microgel Dispersions. Langmuir, 2006, 22, 101-105.	3.5	48
97	Interaction between a Novel Gemini Surfactant and Cyclodextrin: NMR and Surface Tension Studies. Journal of Colloid and Interface Science, 2002, 246, 191-202.	9.4	47
98	Reversible light-induced critical separation. Soft Matter, 2009, 5, 78-80.	2.7	47
99	Dynamic Surface Tensions and Micelle Structures of Dichained Phosphatidylcholine Surfactant Solutions. Langmuir, 1998, 14, 5719-5724.	3.5	46
100	Water-induced structural changes within the L2phase of didodecyldimethylammonium bromide–cyclohexane–water systems. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 487-492.	1.7	45
101	Hybrid Fluorocarbonâ^'Hydrocarbon CO2-philic Surfactants. 1. Synthesis and Properties of Aqueous Solutions. Langmuir, 2004, 20, 9953-9959.	3.5	45
102	Branched trichain sulfosuccinates as novel water in CO2 dispersants. Colloid and Polymer Science, 2006, 284, 1333-1337.	2.1	44
103	Compositions of Mixed Surfactant Layers in Microemulsions Determined by Small-Angle Neutron Scattering. Langmuir, 2003, 19, 2560-2567.	3.5	43
104	Ionic Liquid Tunes Microemulsion Curvature. Langmuir, 2009, 25, 2055-2059.	3.5	43
105	Phosphate Surfactants for Water-in-CO2Microemulsions. Langmuir, 2001, 17, 7948-7950.	3.5	42
106	What Is So Special about Aerosol-OT? Part IV. Phenyl-Tipped Surfactants. Langmuir, 2005, 21, 10021-10027.	3.5	42
107	Formation of PbS nanoclusters using reversed micelles of lead and sodium Aerosol-OT. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 101, 63-76.	4.7	41
108	Properties of Surfactant Monolayers Studied by Surface Light Scattering. Langmuir, 1996, 12, 2303-2307.	3.5	41

#	Article	IF	CITATIONS
109	Separation and Purification of Nanoparticles in a Single Step. Langmuir, 2010, 26, 6989-6994.	3.5	41
110	Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity. Journal of Colloid and Interface Science, 2018, 516, 34-47.	9.4	41
111	CO ₂ : a wild solvent, tamed. Physical Chemistry Chemical Physics, 2011, 13, 1276-1289.	2.8	40
112	Interactions between a Nonionic Gemini Surfactant and Cyclodextrins Investigated by Small-Angle Neutron Scattering. Journal of Colloid and Interface Science, 2002, 255, 403-409.	9.4	39
113	Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 2014, 292, 3013-3023.	2.1	39
114	SANS studies of the effects of surfactant head group on aggregation properties in water/glycol and pure glycol systems. Journal of Colloid and Interface Science, 2007, 315, 714-720.	9.4	38
115	Small-angle neutron scattering from dilute didodecyldimethylammonium bromide water-in-oil microemulsions. Evidence for polymer-like aggregates. Langmuir, 1992, 8, 1503-1506.	3.5	37
116	What Is So Special about Aerosol-OT? Part IIIGlutaconate versus Sulfosuccinate Headgroups and Oilâ 'Water Interfacial Tensions. Langmuir, 2002, 18, 1505-1510.	3.5	37
117	Micellization of economically viable surfactants in CO2. Journal of Colloid and Interface Science, 2003, 258, 367-373.	9.4	37
118	Generation of metal oxide nanoparticles in optimised microemulsions. Journal of Colloid and Interface Science, 2007, 312, 68-75.	9.4	37
119	Microemulsions as tunable nanomagnets. Soft Matter, 2012, 8, 11609.	2.7	37
120	Surfactants and Nanoscience. , 2014, , 135-157.		37
121	Surface and bulk properties of surfactants used in fire-fighting. Journal of Colloid and Interface Science, 2018, 530, 686-694.	9.4	37
122	Mixing in cationic surfactant films studied by small-angle neutron scattering. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2143-2150.	1.7	36
123	Controlling Aggregation of Nonionic Surfactants Using Mixed Clycol Media. Langmuir, 2007, 23, 4199-4202.	3.5	36
124	Light-induced flocculation of gold nanoparticles. Chemical Communications, 2007, , 3912.	4.1	36
125	Modelling the interfacial behaviour of dilute light-switching surfactant solutions. Journal of Colloid and Interface Science, 2015, 445, 16-23.	9.4	36
126	Micelles of asymmetric chain catanionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 117, 215-225.	4.7	35

#	Article	IF	CITATIONS
127	Characterization of nano-cerias synthesized in microemulsions by N2 sorptiometry and electron microscopy. Journal of Colloid and Interface Science, 2006, 302, 501-508.	9.4	35
128	Microemulsions with CO2 as a solvent. Current Opinion in Colloid and Interface Science, 2012, 17, 266-273.	7.4	35
129	Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid and Interface Science, 2016, 230, 54-69.	14.7	34
130	Structure in microemulsions of di-chained surfactants. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 65.	1.7	33
131	Photoreactive Surfactants: A Facile and Clean Route to Oxide and Metal Nanoparticles in Reverse Micelles. Langmuir, 2011, 27, 9277-9284.	3.5	33
132	Conversion of "Waste Plastic―into Photocatalytic Nanofoams for Environmental Remediation. ACS Applied Materials & Interfaces, 2018, 10, 8077-8085.	8.0	33
133	Determination of the Dynamic Surface Excess of a Homologous Series of Cationic Surfactants by Ellipsometry. Langmuir, 2003, 19, 1244-1248.	3.5	32
134	Low energy methods of phase separation in colloidal dispersions and microemulsions. Advances in Colloid and Interface Science, 2009, 149, 39-46.	14.7	32
135	Pressure-induced structural changes in water-in-propane microemulsions. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3121.	1.7	31
136	Invasive and Noninvasive Measurements of Dynamic Surface Tensions. Langmuir, 1997, 13, 5808-5810.	3.5	31
137	Concentrated Polymerized Cationic Surfactant Phasesâ€. Langmuir, 2003, 19, 6357-6362.	3.5	31
138	Alternative non-aqueous water-miscible solvents for surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 134-142.	4.7	31
139	Effective and Efficient Surfactant for CO ₂ Having Only Short Fluorocarbon Chains. Langmuir, 2012, 28, 10988-10996.	3.5	31
140	Amphiphiles for supercritical CO2. Biochimie, 2012, 94, 94-100.	2.6	31
141	Synthesis, characterization, and relaxometry studies of hydrophilic and hydrophobic superparamagnetic Fe 3 O 4 nanoparticles for oil reservoir applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 133-143.	4.7	31
142	Surfactant-Free "Emulsions―Generated by Freezeâ^'Thaw. Langmuir, 2004, 20, 5673-5678.	3.5	30
143	Fluorosurfactants at Structural Extremes:Â Adsorption and Aggregation. Langmuir, 2006, 22, 2034-2038.	3.5	29
144	Effect of Counterion Radius on Surfactant Properties in Winsor II Microemulsion Systems. Langmuir, 1994, 10, 1650-1653.	3.5	28

#	Article	IF	CITATIONS
145	Microemulsions with Didodecyldimethylammonium Bromide Studied by Neutron Contrast Variation. Journal of Colloid and Interface Science, 1997, 190, 449-455.	9.4	28
146	Surfactant adsorption dynamics. International Reviews in Physical Chemistry, 2001, 20, 357-386.	2.3	28
147	Adsorption and Desorption of Nonionic Surfactants on Silica from Toluene Studied by ATR-FTIR. Langmuir, 2009, 25, 9785-9791.	3.5	28
148	Recovery of Nanoparticles Made Easy. Langmuir, 2010, 26, 3794-3797.	3.5	28
149	Nanostructures in Water-in-CO ₂ Microemulsions Stabilized by Double-Chain Fluorocarbon Solubilizers. Langmuir, 2013, 29, 7618-7628.	3.5	28
150	Photoinduced Phase Separation. Journal of the American Chemical Society, 2006, 128, 1468-1469.	13.7	27
151	Photodestructible Vesicles. Langmuir, 2006, 22, 851-853.	3.5	27
152	Separating nanoparticles from microemulsions. Journal of Colloid and Interface Science, 2011, 354, 624-629.	9.4	27
153	The effect of solvent and counterion variation on inverse micelle CMCs in hydrocarbon solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 194-200.	4.7	27
154	Structure of cobalt Aerosol-OT reversed micelles studied by small-angle scattering methods. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2497.	1.7	26
155	Preparation of colloidal cobalt using reversed micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 119, 123-131.	4.7	26
156	Electron Density Matching as a Guide to Surfactant Design. Langmuir, 2006, 22, 963-968.	3.5	26
157	Unexpected Adsorption Behavior of Nonionic Surfactants from Glycol Solvents. Langmuir, 2006, 22, 11187-11192.	3.5	26
158	Rich Selfâ€Assembly Behavior from a Simple Amphiphile. ChemPhysChem, 2010, 11, 3074-3077.	2.1	26
159	Charged microcapsules for controlled release of hydrophobic actives. Part I: encapsulation methodology and interfacial properties. Soft Matter, 2013, 9, 1468-1477.	2.7	26
160	Investigation of Microstructure and Dynamics of Novel Gemini Surfactant Micelles by Small-Angle Neutron Scattering (SANS) and NMR Self-Diffusion. Langmuir, 2003, 19, 18-23.	3.5	25
161	Cylinder to sphere transition in reverse microemulsions: The effect of hydrotropes. Journal of Colloid and Interface Science, 2013, 392, 304-310.	9.4	25
162	Ion specific effects with CO2-philic surfactants. Current Opinion in Colloid and Interface Science, 2013, 18, 40-46.	7.4	25

#	Article	IF	CITATIONS
163	Interaction between Surfactants and Colloidal Latexes in Nonpolar Solvents Studied Using Contrast-Variation Small-Angle Neutron Scattering. Langmuir, 2014, 30, 3422-3431.	3.5	25

164 Celebrating <i>Soft Matter </i>'s 10th Anniversary: Influencing the charge of poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td (27) 27

165	The effects of counterion exchange on charge stabilization for anionic surfactants in nonpolar solvents. Journal of Colloid and Interface Science, 2016, 465, 316-322.	9.4	25
166	pH Switching for the Selective Extraction of Metal lons into Supercritical CO2. Langmuir, 2003, 19, 3145-3150.	3.5	24
167	Control over Microemulsions with Solvent Blends. Langmuir, 2009, 25, 2743-2748.	3.5	24
168	Spin State As a Probe of Vesicle Self-Assembly. Journal of the American Chemical Society, 2016, 138, 2552-2555.	13.7	24
169	Properties of Phosphocholine Microemulsions and the Film Rigidity Model. Langmuir, 1997, 13, 3289-3294.	3.5	22
170	Surfactants with colloids: Adsorption or absorption?. Journal of Colloid and Interface Science, 2015, 449, 205-214.	9.4	22
171	Control over Phase Curvature Using Mixtures of Polymerizable Surfactants. Chemistry of Materials, 2000, 12, 3533-3537.	6.7	21
172	Microemulsion Formation in 1,1,1,2-Tetrafluoroethane (R134a). Langmuir, 2003, 19, 8715-8720.	3.5	21
173	Testing the Scaling Behavior of Microemulsionâ^'Polymer Mixtures. Langmuir, 2009, 25, 3944-3952.	3.5	21
174	Metallo-Solid Lipid Nanoparticles as Colloidal Tools for Meso–Macroporous Supported Catalysts. Langmuir, 2015, 31, 1842-1849.	3.5	21
175	Responsive materials based on magnetic polyelectrolytes and graphene oxide for water clean-up. Journal of Colloid and Interface Science, 2016, 464, 285-290.	9.4	21
176	Rigidities of Cationic Surfactant Films in Microemulsions. Journal of Physical Chemistry B, 1997, 101, 944-948.	2.6	20
177	Adsorption kinetics of ammonium perfluorononanoate at the air–water interface. Physical Chemistry Chemical Physics, 2004, 6, 5061-5065.	2.8	20
178	UV Causes Dramatic Changes in Aggregation with Mixtures of Photoactive and Inert Surfactants. Langmuir, 2004, 20, 6120-6126.	3.5	20
179	Photo-stabilised microemulsions. Chemical Communications, 2005, , 2785.	4.1	20
180	Small-Angle Neutron Scattering Study of Microemulsionâ^'Polymer Mixtures in the Protein Limit. Langmuir, 2008, 24, 3053-3060.	3.5	20

#	Article	IF	CITATIONS
181	Effect of Fluorocarbon and Hydrocarbon Chain Lengths in Hybrid Surfactants for Supercritical CO ₂ . Langmuir, 2015, 31, 7479-7487.	3.5	20
182	Measurement of the Dynamic Surface Excess of the Nonionic Surfactant C8E4OMe by Neutron Reflection and Ellipsometry. Langmuir, 2003, 19, 5960-5962.	3.5	19
183	Microemulsion-based organogels containing inorganic nanoparticles. Soft Matter, 2010, 6, 1291.	2.7	19
184	Shape Transitions in Supercritical CO ₂ Microemulsions Induced by Hydrotropes. Langmuir, 2014, 30, 96-102.	3.5	19
185	Economical and Efficient Hybrid Surfactant with Low Fluorine Content for the Stabilisation of Water-in-CO2 Microemulsions. Journal of Supercritical Fluids, 2015, 98, 127-136.	3.2	19
186	Droplet Structure in Phosphocholine Microemulsions. Langmuir, 1997, 13, 2490-2493.	3.5	18
187	Dynamic Surface Excesses of Fluorocarbon Surfactantsâ€. Langmuir, 2003, 19, 7734-7739.	3.5	18
188	Formation of Surfactant-Stabilized Silica Organosols. Langmuir, 2008, 24, 12793-12797.	3.5	18
189	Photorecovery of Nanoparticles from an Organic Solvent. Langmuir, 2008, 24, 1829-1832.	3.5	18
190	Time-resolved small-angle neutron scattering as a lamellar phase evolves into a microemulsion. Soft Matter, 2009, 5, 2125.	2.7	18
191	Superhydrophobic surfaces with low and high adhesion made from mixed (hydrocarbon and) Tj ETQq1 1 0.78431 Physics, 2014, 52, 782-788.	.4 rgBT /O 2.1	verlock 10 Tf 18
192	Photoexcited fullerene species in Triton-X100 micelles. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 4131-4136.	1.7	17
193	[R4N] [AOT]: A Surfactant Ionic Liquid as a Mild Glycosylation Promoter. Journal of Carbohydrate Chemistry, 2011, 30, 486-497.	1.1	17
194	Stimulus-Responsive Heteroaggregation of Colloidal Dispersions: Reversible Systems and Composite Materials. Polymers, 2011, 3, 1036-1050.	4.5	17
195	A highly hydrophobic anionic surfactant at oil–water, water–polymer and oil–polymer interfaces: Implications for spreading coefficients, polymer interactions and microencapsulation via internal phase separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1048-1059.	4.7	17
196	Effects of small ionic amphiphilic additives on reverse microemulsion morphology. Journal of Colloid and Interface Science, 2014, 421, 56-63.	9.4	17
197	Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO2. Colloids and Surfaces B: Biointerfaces, 2018, 168, 201-210.	5.0	17
198	Breakdown Kinetics of Fluorocarbon Micelles Studied by Stopped-Flow Small-Angle X-ray Scattering. Langmuir, 1998, 14, 1937-1939.	3.5	16

#	Article	IF	CITATIONS
199	Raman and IR spectroscopic studies of the interaction between counterion and polar group in self-assembled systems of AOT-homologous "sodium dialkyl sulfosuccinates''. Physical Chemistry Chemical Physics, 1999, 1, 4395-4407.	2.8	16
200	Conductivity of mixed surfactant water-in-oil microemulsions. Physical Chemistry Chemical Physics, 2004, 6, 1597.	2.8	16
201	Surfactant Aggregation in CO ₂ /Heptane Solvent Mixtures. Langmuir, 2009, 25, 12909-12913.	3.5	16
202	CO2-Soluble Surfactants for Improved Mobility Control. , 2010, , .		16
203	Hydrocarbon Metallosurfactants for CO ₂ . Langmuir, 2010, 26, 4732-4737.	3.5	16
204	Water-in-CO ₂ Microemulsions Stabilized by Fluorinated Cation–Anion Surfactant Pairs. Langmuir, 2019, 35, 3445-3454.	3.5	16
205	Effects of solidification of the oil phase on the structure of colloidal dispersions in cyclohexane. Langmuir, 1993, 9, 903-911.	3.5	15
206	Oligo- and polyethylene glycols in water-in-oil microemulsions. A SANS study. Physical Chemistry Chemical Physics, 1999, 1, 2521-2525.	2.8	15
207	Photosensitive gelatin. Chemical Communications, 2006, , 4407.	4.1	15
208	Hydrocarbon Surfactants for CO2: An Impossible Dream?. Australian Journal of Chemistry, 2007, 60, 630.	0.9	15
209	De-gassed water and surfactant-free emulsions: History, controversy, and possible applications. Advances in Colloid and Interface Science, 2007, 134-135, 89-95.	14.7	15
210	Glycerol-induced swollen lamellar phases with siloxane copolymers. Journal of Colloid and Interface Science, 2007, 316, 723-729.	9.4	15
211	Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic surfactant ionic liquids as exfoliating and stabilizing agents. Carbohydrate Polymers, 2018, 201, 48-59.	10.2	15
212	Lamellar Aggregates in the L2 Phase of a Nonionic Silicone Surfactant (L77-OH). Langmuir, 1994, 10, 2213-2218.	3.5	14
213	Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science, 2010, 350, 443-446.	9.4	14
214	Trimethylsilyl hedgehogs – a novel class of super-efficient hydrocarbon surfactants. Physical Chemistry Chemical Physics, 2017, 19, 23869-23877.	2.8	14
215	Surfactants with aromatic headgroups for optimizing properties of graphene/natural rubber latex composites (NRL): Surfactants with aromatic amine polar heads. Journal of Colloid and Interface Science, 2019, 545, 184-194.	9.4	14
216	Surfactant Aggregation and Adsorption at Interfaces. , 0, , 50-76.		13

13

#	Article	IF	CITATIONS
217	Photo-labile lamellar phases. Soft Matter, 2008, 4, 1215.	2.7	13
218	Effects of Structure Variation on Solution Properties of Hydrotropes: Phenyl versus Cyclohexyl Chain Tips. Langmuir, 2012, 28, 9332-9340.	3.5	13
219	Electrolyte-induced Instability of Colloidal Dispersions in Nonpolar Solvents. Journal of Physical Chemistry Letters, 2017, 8, 4668-4672.	4.6	13
220	Small-angle neutron scattering from novel bis-2- ethylhexylsulphosuccinate microemulsions: evidence for non-spherical structures. Physica B: Condensed Matter, 1992, 180-181, 555-557.	2.7	12
221	Remarkable stability of C60˙–in micelles. Chemical Communications, 1996, , 901-902.	4.1	12
222	Scaling the Structure Factors of Protein Limit Colloidâ^'Polymer Mixtures. Langmuir, 2010, 26, 1630-1634.	3.5	12
223	Recovery of gold nanoparticles using pH-sensitive microgels. Soft Matter, 2010, 6, 2050.	2.7	12
224	Pd- η ³ -C ₆ H ₉ complexes of the Trost modular ligand: high nuclearity columnar aggregation controlled by concentration, solvent and counterion. Chemical Science, 2015, 6, 5793-5801.	7.4	12
225	Effect of surfactant headgroup on low-fluorine-content CO2-philic hybrid surfactants. Journal of Supercritical Fluids, 2016, 116, 148-154.	3.2	12
226	New Class of Amphiphiles Designed for Use in Water-in-Supercritical CO2Microemulsions. Langmuir, 2016, 32, 12413-12422.	3.5	12
227	Shape Modification of Water-in-CO ₂ Microemulsion Droplets through Mixing of Hydrocarbon and Fluorocarbon Amphiphiles. Langmuir, 2016, 32, 1421-1428.	3.5	12
228	Self-Assembled Magnetic Viruslike Particles for Encapsulation and Delivery of Deoxyribonucleic Acid. Langmuir, 2018, 34, 7171-7179.	3.5	12
229	Design of Surfactant Tails for Effective Surface Tension Reduction and Micellization in Water and/or Supercritical CO ₂ . Langmuir, 2020, 36, 14829-14840.	3.5	12
230	Surface Light Scattering from Mixed Surfactant-Oil Monolayers. Langmuir, 1995, 11, 4636-4638.	3.5	11
231	Films of di-chained surfactants in microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 128, 209-215.	4.7	11
232	Droplet interfacial structure studied by SANS contrast variation. Journal of Applied Crystallography, 2000, 33, 749-752.	4.5	11
233	Surface and micelle properties of novel multi-dentate surfactants. Journal of Colloid and Interface Science, 2007, 314, 707-711.	9.4	11
234	Controlling Gold Nanoparticle Stability with Triggerable Microgels. Langmuir, 2010, 26, 11779-11783.	3.5	11

#	Article	IF	CITATIONS
235	Action of hydrotropes in water-in-CO2 microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 476, 76-82.	4.7	11
236	Magnetic surfactants as molecular based-magnets with spin glass-like properties. Journal of Physics Condensed Matter, 2016, 28, 176002.	1.8	11
237	Structural studies of thermally stable, combustion-resistant polymer composites. Polymer Journal, 2017, 49, 711-719.	2.7	11
238	Properties of Mixed Alcoholâ^'Zwitterionic Surfactant Films in Quaternary Water-in-Oil Microemulsions. Langmuir, 2003, 19, 7219-7225.	3.5	10
239	Design and Performance of Surfactants for Carbon Dioxide. ACS Symposium Series, 2003, , 285-308.	0.5	10
240	Stabilization of CeO2 nanoparticles in a CO2 rich solvent. Chemical Communications, 2008, , 5628.	4.1	10
241	Adsorption and Desorption of Cationic Surfactants onto Silica from Toluene Studied by ATR-FTIR. Langmuir, 2010, 26, 671-677.	3.5	10
242	Sticky superhydrophobic hard nanofibers from soft matter. RSC Advances, 2014, 4, 35708-35716.	3.6	10
243	Electrochemical exfoliation of graphite in nanofibrillated kenaf cellulose (NFC)/surfactant mixture for the development of conductive paper. Carbohydrate Polymers, 2020, 228, 115376.	10.2	10
244	Surface light scattering from cationic surfactant films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143, 261-271.	4.7	9
245	Photo-destructible Surfactants in Microemulsions. , 2006, , 106-110.		9
246	Three-component microemulsions formed using pH-degradable 1,3-dioxolane alkyl ethoxylate surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 394-403.	4.7	9
247	Reverse Water-in-Fluorocarbon Microemulsions Stabilized by New Polyhydroxylated Nonionic Fluorinated Surfactants. Langmuir, 2009, 25, 8919-8926.	3.5	9
248	Fluorinated microemulsions as reaction media for fluorous nanoparticles. Soft Matter, 2010, 6, 971.	2.7	9
249	Structure and interactions of microemulsions in a plastic-crystalline phase. Chemical Physics Letters, 1990, 166, 153-158.	2.6	8
250	Application of a multi-dentate amphiphilic compound to transfer silver nanoparticles into an organic solvent. Journal of Colloid and Interface Science, 2006, 304, 388-393.	9.4	8
251	Recovery and Reuse of Nanoparticles by Tuning Solvent Quality. ChemSusChem, 2010, 3, 339-341.	6.8	8
252	Interrogation of a dynamic multi-catalyst ensemble in asymmetric catalysis. Faraday Discussions, 0, 145, 27-47.	3.2	8

#	Article	IF	CITATIONS
253	Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering. Journal of Colloid and Interface Science, 2014, 435, 112-118.	9.4	8
254	Magnetically-responsive electrophoretic silica organosols. Journal of Colloid and Interface Science, 2014, 426, 252-255.	9.4	8
255	Tuning Micellar Structures in Supercritical CO ₂ Using Surfactant and Amphiphile Mixtures. Langmuir, 2017, 33, 2655-2663.	3.5	8
256	Highly branched triple-chain surfactant-mediated electrochemical exfoliation of graphite to obtain graphene oxide: colloidal behaviour and application in water treatment. Physical Chemistry Chemical Physics, 2020, 22, 12732-12744.	2.8	8
257	Polymerization of Cationic Surfactant Films in Microemulsions. Journal of Dispersion Science and Technology, 2001, 22, 597-607.	2.4	7
258	Neutron reflection and small-angle neutron scattering studies of a fluorocarbon telomer surfactant. Journal of Colloid and Interface Science, 2003, 261, 184-190.	9.4	7
259	Fluorocarbon–hydrocarbon incompatibility in micellar polymerizations. Journal of Colloid and Interface Science, 2009, 330, 437-442.	9.4	7
260	Alternative Route to Nanoscale Aggregates with a pH-Responsive Random Copolymer. Langmuir, 2017, 33, 2628-2638.	3.5	7
261	Vibrational spectra of Aerosol-OT homologous sodium dialkylsulfosuccinates — normal coordinate analyses of sodium diethylsulfosuccinate and sodium dimethylsulfosuccinate and their application to longer homologues. Vibrational Spectroscopy, 2000, 23, 151-168.	2.2	6
262	Sulfosuccinate and Sulfocarballylate Surfactants As Charge Control Additives in Nonpolar Solvents. Langmuir, 2015, 31, 13690-13699.	3.5	6
263	NMR-Responsive Paramagnetic [M-EDTA] (M = Fe ³⁺ , Mn ²⁺ , Cu ²⁺) Complexes to Differentiate T ₂ -Distribution Signals of Crude Oil and Brine. Energy & Fuels, 2019, 33, 12278-12285.	5.1	6
264	Light-sensitive lamellar phases. Journal of Colloid and Interface Science, 2008, 322, 611-616.	9.4	5
265	Polymer-induced recovery of nanoparticles from microemulsions. Physical Chemistry Chemical Physics, 2011, 13, 3059-3063.	2.8	5
266	The internal structure of poly(methyl methacrylate) latexes in nonpolar solvents. Journal of Colloid and Interface Science, 2016, 479, 234-243.	9.4	5
267	Surfactant adsorption dynamics. International Reviews in Physical Chemistry, 2001, 20, 357-386.	2.3	5
268	Bidisperse colloids: Nanoparticles and microemulsions in coexistence. Journal of Colloid and Interface Science, 2010, 344, 447-450.	9.4	4
269	Solubilisation of oils in aqueous solutions of a random cationic copolymer. Journal of Colloid and Interface Science, 2017, 502, 210-218.	9.4	4
270	Fabrication and application of composite adsorbents made by one-pot electrochemical exfoliation of graphite in surfactant ionic liquid/nanocellulose mixtures. Physical Chemistry Chemical Physics, 2021, 23, 19313-19328.	2.8	4

#	Article	IF	CITATIONS
271	Controlling water adhesion on superhydrophobic surfaces with bi-functional polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126307.	4.7	4
272	Surfactants and nanoscience. , 2022, , 153-182.		4
273	Solid mesostructured polymer–surfactant films at the air–liquid interface. Advances in Colloid and Interface Science, 2015, 222, 564-572.	14.7	3
274	Magnetic and Phase Behavior of Magnetic Waterâ€inâ€Oil Microemulsions. Journal of Surfactants and Detergents, 2017, 20, 799-804.	2.1	3
275	Charging Poly(methyl Methacrylate) Latexes in Nonpolar Solvents: Effect of Particle Concentration. Langmuir, 2017, 33, 13543-13553.	3.5	3
276	Water-in-CO2 Microemulsions Stabilized by an Efficient Catanionic Surfactant. Langmuir, 2020, 36, 7418-7426.	3.5	3
277	Incorporation of gold nanoparticles into pH responsive mixed microgel systems. Mediterranean Journal of Chemistry, 2014, 1, 259-272.	0.7	3
278	Very low surface tensions with "Hedgehog―surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127690.	4.7	3
279	Measurement of inter-particle forces from the osmotic pressure of partially frozen dispersions. Journal of Physics Condensed Matter, 1996, 8, 9531-9536.	1.8	2
280	Raman scattering spectra of Aerosol-OT homologous sodium dialkylsulfosuccinates and the environment of their hydrophobic chains. Colloid and Polymer Science, 1999, 277, 947-956.	2.1	2
281	Infrared absorption spectra of Aerosol-OT homologous sodium dialkylsulfosuccinates and the effect of crystal polymorphism on the environment of the succinate segment. Colloid and Polymer Science, 1999, 277, 1051-1057.	2.1	2
282	Soft matter at ISIS. Materials Today, 2009, 12, 92-99.	14.2	2
283	Role of the Succinate Skeleton in the Disorder–Order Transition of AOT and Its Analogous Molecules: Detection by Infrared Absorption Spectra of the Configurations Arising from the Difference in Torsion Angles of the Succinate Skeleton. Bulletin of the Chemical Society of Japan, 2010. 83. 651-659.	3.2	2
284	A guide to designing graphene-philic surfactants. Journal of Colloid and Interface Science, 2022, 620, 346-355.	9.4	2
285	Photo-destructible Surfactants in Microemulsions. , 2006, , 106-110.		1
286	Surfactant-free "emulsions" generated by freeze-thaw. Langmuir, 2004, 20, 5673-8.	3.5	1
287	Liquid films, interfaces and colloidal dispersions. Journal of Colloid and Interface Science, 2015, 449, 1.	9.4	0
288	Surface Design and Engineering 2014. Journal of Colloid and Interface Science, 2015, 447, 128.	9.4	0

#	Article	IF	CITATIONS
289	Periodic Formation/Breakdown of Lamellar Aggregates with Anionic Cyanobiphenyl Surfactants. Langmuir, 2015, 31, 13040-13047.	3.5	0
290	Editorial: Positive developments for JCIS. Journal of Colloid and Interface Science, 2017, 505, A1-A2.	9.4	0
291	Continued positive development of JCIS. Journal of Colloid and Interface Science, 2018, 529, A1-A2.	9.4	Ο
292	JCIS experiences accelerated interest and recognition. Journal of Colloid and Interface Science, 2019, 552, 801.	9.4	0
293	Steric Interactions between Microemulsion Droplets in a Plastic-Crystalline Phase. , 1991, , 469-476.		0