Samuele Agostini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unveiling the occurrence of transient, multi-contaminated mafic magmas inside a rhyolitic reservoir feeding an explosive eruption (Nisyros, Greece). Lithos, 2022, 410-411, 106574.	1.4	1
2	Data on unveiling the occurrence of transient, multi-contaminated mafic magmas inside a rhyolitic reservoir feeding an explosive eruption (Nisyros, Greece). Data in Brief, 2022, 42, 108077.	1.0	1
3	The westernmost Late Miocene–Pliocene volcanic activity in the Vardar zone (North Macedonia). International Journal of Earth Sciences, 2022, 111, 749-766.	1.8	2
4	HydroQuakes, central Apennines, Italy: Towards a hydrogeochemical monitoring network for seismic precursors and the hydro-seismo-sensitivity of boron. Journal of Hydrology, 2021, 598, 125754.	5.4	13
5	From subduction to strike slip-related volcanism: insights from Sr, Nd, and Pb isotopes and geochronology of lavas from Sivas–Malatya region, Central Eastern Anatolia. International Journal of Earth Sciences, 2021, 110, 849-874.	1.8	7
6	Deciphering variable mantle sources and hydrous inputs to arc magmas in Kamchatka. Earth and Planetary Science Letters, 2021, 562, 116848.	4.4	13
7	A heterogeneous subcontinental mantle under the African–Arabian Plate boundary revealed by boron and radiogenic isotopes. Scientific Reports, 2021, 11, 11230.	3.3	9
8	Quaternary Melanephelinites and Melilitites from Nowbaran (NW Urumieh-Dokhtar Magmatic Arc,) Tj ETQq0 0 () rgBT /Ov 2.8	verlock 10 Tf 5 15
9	The pyroclastic breccias from Cabezo Negro de Tallante (SE Spain): Is there any relation with carbonatitic magmatism?. Lithos, 2021, 392-393, 106140.	1.4	1
10	Isotopic Compositions (Liâ€Bâ€5iâ€Oâ€Mgâ€5râ€Ndâ€Hfâ€Pb) and Fe ²⁺ /ΣFe Ratios of Three Syr Glass Reference Materials (ARMâ€1, ARMâ€2, ARMâ€3). Geostandards and Geoanalytical Research, 2021, 45, 719-745.	ithetic And 3.1	desite 32
11	Synâ€rift hydrothermal circulation in the Mesozoic carbonates of the western Adriatic continental palaeomargin (Western Southalpine Domain, NW Italy). Basin Research, 2021, 33, 3045-3076.	2.7	3
12	Miocene paleoceanographic evolution of the Mediterranean area and carbonate production changes: A review. Earth-Science Reviews, 2021, 221, 103785.	9.1	24
13	Boron isotope composition of coexisting tourmaline and hambergite in alkaline and granitic pegmatites. Lithos, 2020, 352-353, 105293.	1.4	7
14	Fingerprinting and relocating tectonic slices along the plate interface: Evidence from the Lago Superiore unit at Monviso (Western Alps). Lithos, 2020, 352-353, 105308.	1.4	9
15	Strongly SiO2-undersaturated, CaO-rich kamafugitic Pleistocene magmatism in Central Italy (San) Tj ETQq1 1 0. Reviews, 2020, 208, 103256.	784314 rg 9.1	gBT /Overloc 18
16	Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling. Chemical Geology, 2020, 546, 119626.	3.3	21
17	Petrological evolution of Karlıova-Varto volcanism (Eastern Turkey): Magma genesis in a transtensional triple-junction tectonic setting. Lithos, 2020, 364-365, 105524.	1.4	15
18	Boron isotope insights into the origin of subduction signatures in continent-continent collision zone volcanism. Farth and Planetary Science Letters, 2020, 538, 116207.	4.4	16

SAMUELE AGOSTINI

19Neogene volcanism in Elazig-Tunceli area (eastern Anatolia): geochronological and petrological constraints. Italian Journal of Geosciences, 2019, 138, 433-455.Constraints.20The upper crustal magma plumbing system of the Pleistocene Apacheta-Aguilucho Volcanic Complex area (Altiplano-Puna, northern Chile) as inferred from the erupted lavas and their enclaves. Journal of Volcanology and Geothermal Research, 2019, 373, 179-198.221Petrology and Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 2019, 60, 1229-1262.222Origin of Triassic magmatism of the Southern Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic ratios. Gondwana Research, 2019, 75, 218-238.6	0.8 2.1 2.8 6.0	5 21 20
20The upper crustal magma plumbing system of the Pleistocene Apacheta-Aguilucho Volcanic Complex area (Altiplano-Puna, northern Chile) as inferred from the erupted lavas and their enclaves. Journal of Volcanology and Geothermal Research, 2019, 373, 179-198.2121Petrology and Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 2019, 60, 1229-1262.2222Origin of Triassic magmatism of the Southern Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic ratios. Gondwana Research, 2019, 75, 218-238.6	2.1 2.8 6.0	21 20
 Petrology and Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 2019, 60, 1229-1262. Origin of Triassic magmatism of the Southern Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic ratios. Gondwana Research, 2019, 75, 218-238. 	2.8 6.0	20
Origin of Triassic magmatism of the Southern Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic ratios. Gondwana Research, 2019, 75, 218-238.	6.0	
		29
The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. , 2019, 15, 642-658.		12
Leucitites within and around the Mediterranean area. Lithos, 2019, 324-325, 216-233.	1.4	17
Off-axis volcano-tectonic activity during continental rifting: Insights from the transversal Goba-Bonga lineament, Main Ethiopian Rift (East Africa). Tectonophysics, 2018, 728-729, 75-91.	2.2	16
Miocene Oceanographic Evolution Based on the Sr and Nd Isotope Record of the Central Mediterranean. Paleoceanography and Paleoclimatology, 2018, 33, 31-47.	2.9	21
No significant boron in the hydrated mantle of most subducting slabs. Nature Communications, 2018, 9, 4602.	12.8	23
Sub-lithospheric origin of Na-alkaline and calc-alkaline magmas in a post-collisional tectonic regime: Sr-Nd-Pb isotopes in recent monogenetic volcanism of Cappadocia, Central Turkey. Lithos, 2018, 316-317, 304-322.	1.4	32
Strontium stratigraphy of the upper Miocene <i>Lithothamnion</i> Limestone in the Majella Mountain, central Italy, and its palaeoenvironmental implications. Lethaia, 2017, 50, 561-575.	1.4	11
 Eocene-Miocene igneous activity in Provence (SE France): 40Ar/39Ar data, geochemical-petrological constraints and geodynamic implications. Lithos, 2017, 288-289, 72-90. 	1.4	14
The Monterey Event within the Central Mediterranean area: The shallowâ€water record. Sedimentology, 2017, 64, 286-310.	3.1	24
Transition from Compression to Strike-slip Tectonics Revealed by Miocene–Pleistocene Volcanism West of the Karlıova Triple Junction (East Anatolia). Journal of Petrology, 2017, 58, 2055-2087.	2.8	38
Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy). Geochimica Et Cosmochimica Acta, 2016, 190, 115-133.	3.9	53
Exotic lamproites or normal ultrapotassic rocks? The Late Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the circum-Mediterranean lamproites. Journal of Volcanology and Geothermal Research, 2016, 327, 539-553.	2.1	23
Magmas with slab fluid and decompression melting signatures coexisting in the Gulf of Fonseca: Evidence from Isla El Tigre volcano (Honduras, Central America). Lithos, 2016, 240-243, 1-15.	1.4	3

Ca-rich carbonates associated with ultrabasic-ultramafic melts: Carbonatite or limestone xenoliths? A case study from the late Miocene Morron de Villamayor volcano (Calatrava Volcanic Field, central) Tj ETQq0 0 0 rgBJ /Overlæk 10 Tf 5 36

#	Article	IF	CITATIONS
37	Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes. Bulletin of Volcanology, 2015, 77, 1.	3.0	10
38	B, Sr and Pb isotope geochemistry of high-pressure Alpine metaperidotites monitors fluid-mediated element recycling during serpentinite dehydration in subduction mélange (Cima di Gagnone, Swiss) Tj ETQq0 () (Br g BT /C)v ød ock 10 T
39	Erupted cumulate fragments in rhyolites from Lipari (Aeolian Islands). Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	27
40	Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209. Geochimica Et Cosmochimica Acta, 2014, 126, 30-48.	3.9	43
41	11B-rich fluids in subduction zones: The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology, 2014, 376, 20-30.	3.3	66
42	Origin and evolution of Cenozoic magmatism of Sardinia (Italy). A combined isotopic (SrဓNd–Pb–O–Hf–Os) and petrological view. Lithos, 2013, 180-181, 138-158.	1.4	51
43	Geodynamic evolution of the Aegean: constraints from the Plio-Pleistocene volcanism of the Volos–Evia area. Journal of the Geological Society, 2010, 167, 475-489.	2.1	18
44	On the geodynamics of the Aegean rift. Tectonophysics, 2010, 488, 7-21.	2.2	89
45	Drying and dying of a subducted slab: Coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth and Planetary Science Letters, 2008, 272, 139-147.	4.4	90
46	Neogene volcanism and extension in Western Anatolian-Aegean area: A new geodynamic model. IOP Conference Series: Earth and Environmental Science, 2008, 2, 012008.	0.3	2
47	The transition from subduction-related to intraplate Neogene magmatism in the Western Anatolia and Aegean area. , 2007, , .		38
48	Evidence for serpentinite fluid in convergent margin systems: The example of El Salvador (Central) Tj ETQq0 0 0 r	gBT /Over	ock 10 Tf 50

49	Tectonic and magmatic evolution of the active volcanic front in El Salvador: insight into the BerlÃn and Ahuachapán geothermal areas. Geothermics, 2006, 35, 368-408.	3.4	50
50	Neogene and Quaternary volcanism in Western Anatolia: Magma sources and geodynamic evolution. Marine Geology, 2005, 221, 397-421.	2.1	149
51	delta11B as tracer of slab dehydration and mantle evolution in Western Anatolia Cenozoic Magmatism. Terra Nova, 2005, 17, 259-264.	2.1	40
52	Tertiary high-Mg volcanic rocks from Western Anatolia and their geodynamic significance for the evolution of the Aegean area. Developments in Volcanology, 2005, , 345-362.	0.5	2
53	Slab window-related magmatism from southernmost South America: the Late Miocene mafic volcanics from the Estancia Glencross Area (â^¼52°S, Argentina–Chile). Lithos, 2001, 57, 67-89. 	1.4	111
54	The Pali Aike Volcanic Field, Patagonia: slab-window magmatism near the tip of South America. Tectonophysics, 2000, 321, 407-427.	2.2	140

#	Article	IF	CITATIONS
55	On the extension in western Anatolia and the Aegean sea. Journal of the Virtual Explorer, 0, 08, .	0.0	65
56	Volcanic Rocks From Foça-Karaburun and Ayvalik-Lesvos grabens (Western Anatolia) and Their Petrogenetic-Geodynamic Significance. Turkish Journal of Earth Sciences, 0, , .	1.0	6
57	A showcase of igneous processes in the Urumieh-Dokhtar Magmatic Arc: the Miocene-Quaternary collisional magmatism of the Bijar-Qorveh area, northwest Iran. Journal of Petrology, 0, , .	2.8	5