Hajime Nakanotani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3381525/publications.pdf

Version: 2024-02-01

47004 31843 10,803 128 47 101 citations h-index g-index papers 133 133 133 5515 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficiency of Thermally Activated Delayed Fluorescence Sensitized Triplet Upconversion Doubled in Threeâ€Component System. Advanced Materials, 2022, 34, e2103976.	21.0	13
2	Highly efficient pixelated near-infrared OLED light source. , 2022, , .		0
3	Significant role of spin-triplet state for exciton dissociation in organic solids. Science Advances, 2022, 8, eabj9188.	10.3	13
4	Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films. Nature Materials, 2022, 21, 819-825.	27.5	27
5	Highly Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes Based on Rational Molecular Design and Device Engineering. Advanced Functional Materials, 2022, 32, .	14.9	27
6	Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chemical Science, 2022, 13, 7821-7828.	7.4	8
7	Tailorâ€Made Multiâ€Resonance Terminal Emitters toward Narrowband, Highâ€Efficiency, and Stable Hyperfluorescence Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	21
8	Isotope Effect of Host Material on Device Stability of Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000057.	9.9	22
9	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie - International Edition, 2021, 60, 8477-8482.	13.8	130
10	Investigating HOMO Energy Levels of Terminal Emitters for Realizing Highâ€Brightness and Stable TADFâ€Assisted Fluorescence Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2001090.	5.1	55
11	Thermally Activated Delayed Fluorescence Properties of Trioxoazatriangulene Derivatives Modified with Electron Donating Groups. Advanced Optical Materials, 2021, 9, 2002174.	7.3	35
12	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie, 2021, 133, 8558-8563.	2.0	23
13	19â€1: <i>Invited Paper:</i> Stable Pureâ€Blue Hyperfluorescence OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 224-227.	0.3	1
14	Advances in Thermally Activated Delayed Fluorescent Materials and the Cutting Edge of High Performance OLEDs. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 269-276.	0.0	0
15	Thermally-activated Delayed Fluorescence for Light-emitting Devices. Chemistry Letters, 2021, 50, 938-948.	1.3	103
16	Direct Observation of Photoexcited Electron Dynamics in Organic Solids Exhibiting Thermally Activated Delayed Fluorescence via Timeâ€Resolved Photoelectron Emission Microscopy. Advanced Optical Materials, 2021, 9, 2100619.	7.3	7
17	Tetrabenzo[<i>>a</i> , <i><c i="">]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie, 2021, 133, 19513-19522.</c></i>	2.0	4
18	Tetrabenzo[<i>a</i> , <i>c</i>)phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie - International Edition, 2021, 60, 19364-19373.	13.8	67

#	Article	IF	CITATIONS
19	2,6â€Dicarbonitrile Diphenylâ€1λ ⁵ â€Phosphinine (DCNP)—A Robust Conjugated Building Block fo Multiâ€Functional Dyes Exhibiting Tunable Amplified Spontaneous Emission. Advanced Optical Materials, 2021, 9, 2101122.	7.3	11
20	Amplified spontaneous emission from oligo($\langle i \rangle p \langle i \rangle$ -phenylenevinylene) derivatives. Materials Advances, 2021, 2, 3906-3914.	5.4	7
21	Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nature Photonics, 2021, 15, 203-207.	31.4	449
22	Observation of Nonradiative Deactivation Behavior from Singlet and Triplet States of Thermally Activated Delayed Fluorescence Emitters in Solution. Journal of Physical Chemistry Letters, 2020, 11, 562-566.	4.6	36
23	Partial Modification of Electron-withdrawing Groups in Thermally-activated Delayed Fluorescence Materials Aimed to Improve Efficiency and Stability. Chemistry Letters, 2020, 49, 1189-1193.	1.3	O
24	Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 9498-9506.	8.0	18
25	H ₂ O-Induced Crystallization of Organic Luminescent Thin Films by Direct Film Storage in a High Vacuum. Journal of Physical Chemistry C, 2020, 124, 24919-24929.	3.1	3
26	Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nature Photonics, 2020, 14, 636-642.	31.4	331
27	Precise Exciton Management of Quaternary Emission Layers for Highly Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. ACS Applied Materials & Diterfaces, 2020, 12, 50668-50674.	8.0	8
28	Role of Spontaneous Orientational Polarization in Organic Donor–Acceptor Blends for Exciton Binding. Advanced Optical Materials, 2020, 8, 2000896.	7.3	18
29	Molecular Design Based on Donor-Weak Donor Scaffold for Blue Thermally-Activated Delayed Fluorescence Designed by Combinatorial DFT Calculations. Frontiers in Chemistry, 2020, 8, 403.	3.6	18
30	Understanding degradation of organic light-emitting diodes from magnetic field effects. Communications Materials, 2020, 1 , .	6.9	28
31	Near-infrared absorbing pyrrolopyrrole aza-BODIPY-based donor–acceptor polymers with reasonable photoresponse. Journal of Materials Chemistry C, 2020, 8, 8770-8776.	5.5	19
32	Molecular orientation of disk-shaped small molecules exhibiting thermally activated delayed fluorescence in host–guest films. Applied Physics Letters, 2020, 116, .	3.3	32
33	The Role of Reverse Intersystem Crossing Using a TADF‶ype Acceptor Molecule on the Device Stability of Exciplexâ€Based Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1906614.	21.0	109
34	Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nature Communications, 2020, 11, 1765.	12.8	287
35	High-triplet-energy Bipolar Host Materials Based on Phosphine Oxide Derivatives for Efficient Sky-blue Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes with Reduced Roll-off. Chemistry Letters, 2019, 48, 1225-1228.	1.3	4
36	Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nature Materials, 2019, 18, 1084-1090.	27.5	271

#	Article	IF	CITATIONS
37	TADF activation by solvent freezing: The role of nonradiative triplet decay and spin-orbit coupling in carbazole benzonitrile derivatives. Synthetic Metals, 2019, 252, 62-68.	3.9	14
38	Organic Lightâ€Emitting Diode: Effect of Carrier Balance on Device Degradation of Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitters (Adv. Electron.) Tj ETQq0 C	0 fgBT /C)vedock 10 Tf
39	Photostable and highly emissive glassy organic dots exhibiting thermally activated delayed fluorescence. Chemical Communications, 2019, 55, 5215-5218.	4.1	17
40	Suppression of Structural Change upon S ₁ –T ₁ Conversion Assists the Thermally Activated Delayed Fluorescence Process in Carbazole-Benzonitrile Derivatives. Journal of Physical Chemistry Letters, 2019, 10, 2475-2480.	4.6	45
41	Photoluminescence Quenching Probes Spin Conversion and Exciton Dynamics in Thermally Activated Delayed Fluorescence Materials. Advanced Materials, 2019, 31, e1804490.	21.0	31
42	Effect of Carrier Balance on Device Degradation of Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitters. Advanced Electronic Materials, 2019, 5, 1800708.	5.1	42
43	Slow recombination of spontaneously dissociated organic fluorophore excitons. Nature Communications, 2019, 10, 5748.	12.8	38
44	Highly Efficient Thermally Activated Delayed Fluorescence with Slow Reverse Intersystem Crossing. Chemistry Letters, 2019, 48, 126-129.	1.3	25
45	Well-Ordered 4CzIPN ((4s,6s)-2,4,5,6-Tetra(9-H-carbazol-9-yl)isophthalonitrile) Layers: Molecular Orientation, Electronic Structure, and Angular Distribution of Photoluminescence. Journal of Physical Chemistry Letters, 2018, 9, 863-867.	4.6	23
46	Rational Molecular Design for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials, 2018, 28, 1706023.	14.9	195
47	Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nature Communications, 2018, 9, 5036.	12.8	113
48	Trifluoromethane modification of thermally activated delayed fluorescence molecules for high-efficiency blue organic light-emitting diodes. Chemical Communications, 2018, 54, 8261-8264.	4.1	44
49	Exploiting Singlet Fission in Organic Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1801484.	21.0	100
50	Excited state engineering for efficient reverse intersystem crossing. Science Advances, 2018, 4, eaao6910.	10.3	294
51	The Importance of Excitedâ€State Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie, 2018, 130, 12560-12564.	2.0	25
52	The Importance of Excitedâ€State Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie - International Edition, 2018, 57, 12380-12384.	13.8	83
53	Organic light-emitting devices with E-type delayed fluorescence emitters. , 2018, , .		O
54	Solvent-dependent investigation of carbazole benzonitrile derivatives: does the LE3â^'CT1 energy gap facilitate thermally activated delayed fluorescence?. Journal of Photonics for Energy, 2018, 8, 1.	1.3	27

#	Article	IF	CITATIONS
55	Well-ordered films of disk-shaped thermally activated delayed fluorescence molecules. Journal of Photonics for Energy, 2018, 8, 1.	1.3	3
56	Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Science Advances, 2017, 3, e1603282.	10.3	263
57	Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2017, 5, 1700051.	7.3	84
58	Near-infrared organic light-emitting diodes for biosensing with high operating stability. Applied Physics Express, 2017, 10, 074101.	2.4	64
59	Controlling Singlet–Triplet Energy Splitting for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie, 2017, 129, 1593-1597.	2.0	287
60	Controlling Singlet–Triplet Energy Splitting for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie - International Edition, 2017, 56, 1571-1575.	13.8	380
61	Molecular Design for Blue Thermal Activated Delayed Fluorescence Materials: Substitution Position Effect. Chemistry Letters, 2017, 46, 1490-1492.	1.3	13
62	Donorâ \in "Îfâ \in "Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angewandte Chemie - International Edition, 2017, 56, 16536-16540.	13.8	109
63	Donor–Ïf–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angewandte Chemie, 2017, 129, 16763-16767.	2.0	25
64	Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System. ACS Central Science, 2017, 3, 769-777.	11.3	148
65	Thermally activated delayed fluorescence of Bis(9,9-dimethyl-9,10-dihydroacridine) dibenzo[b,d]thiophene 5,5-dioxide derivatives for organic light-emitting diodes. Journal of Luminescence, 2017, 190, 485-491.	3.1	6
66	Nearâ€Infrared Electrophosphorescence up to 1.1 µm using a Thermally Activated Delayed Fluorescence Molecule as Triplet Sensitizer. Advanced Materials, 2017, 29, 1604265.	21.0	51
67	Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts. Nature Communications, 2017, 8, 2250.	12.8	159
68	Magnesium-gold binary alloy for organic light-emitting diodes with high corrosion resistance. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 040607.	1.2	4
69	Role of intermediate state in the excited state dynamics of highly efficient TADF molecules. Proceedings of SPIE, 2016, , .	0.8	2
70	Tunable OLEDs: Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Fullâ€Color Emission (Adv. Funct. Mater. 37/2016). Advanced Functional Materials, 2016, 26, 6847-6847.	14.9	0
71	Boron Difluoride Complexes of Expanded Nâ€Confused Calix[<i>n</i>]phyrins That Demonstrate Unique Luminescent and Lasing Properties. Angewandte Chemie - International Edition, 2016, 55, 12045-12049.	13.8	42
72	Thermally Activated Delayed Fluorescence from Pentacarbazorylbenzonitrile. Chemistry Letters, 2016, 45, 770-772.	1.3	8

#	Article	IF	Citations
73	Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Full olor Emission. Advanced Functional Materials, 2016, 26, 6703-6710.	14.9	81
74	Application of wide-energy-gap material 3,4-di(9H-carbazol-9-yl) benzonitrile in organic light-emitting diodes. Thin Solid Films, 2016, 619, 120-124.	1.8	12
75	58-2: Revealing the Excited-state Dynamics of Thermally Activated Delayed Flourescence Molecules by using Transient Absorption Spectrospy. Digest of Technical Papers SID International Symposium, 2016, 47, 786-789.	0.3	11
76	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 6864-6868.	13.8	123
77	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 6978-6982.	2.0	27
78	Effect of Joule heating on transient current and electroluminescence in p-i-n organic light-emitting diodes under pulsed voltage operation. Organic Electronics, 2016, 31, 287-294.	2.6	25
79	Quantification of temperature rise in unipolar organic conductors during short voltage-pulse excitation using electrical testing methods. Organic Electronics, 2016, 31, 191-197.	2.6	20
80	Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers. Science Advances, 2016, 2, e1501470.	10.3	104
81	Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives. Chemical Communications, 2016, 52, 3103-3106.	4.1	39
82	Effect of reverse intersystem crossing rate to suppress efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters. Chemical Physics Letters, 2016, 644, 62-67.	2.6	96
83	Light Amplification in an Organic Solidâ€State Film with the Aid of Tripletâ€toâ€Singlet Upconversion. Advanced Optical Materials, 2015, 3, 1381-1388.	7.3	47
84	High-Efficiency Sky-Blue Organic Light-Emitting Diodes Utilizing Thermally-Activated Delayed Fluorescence. IEICE Transactions on Electronics, 2015, E98.C, 971-976.	0.6	8
85	High Performance Organic Light-emitting Diodes Based on Thermally-activated Delayed Fluorescence Materials. Journal of the Vacuum Society of Japan, 2015, 58, 73-78.	0.3	0
86	Controlled emission colors and singlet–triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2015, 3, 2175-2181.	5.5	147
87	Highâ€Efficiency White Organic Lightâ€Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters. Advanced Materials, 2015, 27, 2019-2023.	21.0	236
88	Introduction of oxygen into organic thin films with the aim of suppressing singlet–triplet annihilation. Chemical Physics Letters, 2015, 624, 43-46.	2.6	14
89	Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Scientific Reports, 2015, 5, 8429.	3.3	227
90	Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Applied Physics Letters, 2015, 106, .	3.3	50

#	Article	IF	Citations
91	Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Materials, 2015, 14, 330-336.	27.5	1,129
92	High-efficiency organic light-emitting diodes with blue fluorescent emitter., 2014,,.		1
93	High efficiency organic light-emitting diodes with conventional fluorescent emitters. , 2014, , .		1
94	High-efficiency organic light-emitting diodes with fluorescent emitters. Nature Communications, 2014, 5, 4016.	12.8	869
95	Light-emitting organic field-effect transistors based on highly luminescent single crystals of thiophene/phenylene co-oligomers. Journal of Materials Chemistry C, 2014, 2, 4918.	5.5	65
96	Dual Intramolecular Charge-Transfer Fluorescence Derived from a Phenothiazine-Triphenyltriazine Derivative. Journal of Physical Chemistry C, 2014, 118, 15985-15994.	3.1	261
97	High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence. Applied Physics Letters, 2014, 104, 233304.	3.3	116
98	Analysis of alternating current driven electroluminescence in organic light emitting diodes: A comparative study. Organic Electronics, 2014, 15, 1815-1821.	2.6	15
99	Organic Light-Emitting Transistors for Next-Generation Photonic Devices. Journal of the Japan Society of Colour Material, 2014, 87, 436-441.	0.1	0
100	Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Organic Electronics, 2013, 14, 2721-2726.	2.6	455
101	Twisted Intramolecular Charge Transfer State for Long-Wavelength Thermally Activated Delayed Fluorescence. Chemistry of Materials, 2013, 25, 3766-3771.	6.7	297
102	Multi-color light-emitting transistors composed of organic single crystals. Organic Electronics, 2013, 14, 2737-2742.	2.6	25
103	Amplified Spontaneous Emission: Amplified Spontaneous Emission and Electroluminescence from Thiophene/Phenylene Coâ€Oligomerâ€Doped <i>p</i> àâ€bis(<i>p</i> â€Styrylstyryl)Benzene Crystals (Advanced)	「j 7E 3[Qq1 :	l 0. 784314
104	Amplified Spontaneous Emission and Electroluminescence from Thiophene/Phenylene Coâ€Oligomerâ€Doped <i>p</i> â€bis(<i>p</i> â€Styrylstyryl)Benzene Crystals. Advanced Optical Materials, 2013 1, 422-427.	,7.3	28
105	Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Scientific Reports, 2013, 3, 2127.	3.3	305
106	Capacitance-voltage characteristics of a 4,4′-bis[(<i>N</i> -carbazole)styryl]biphenyl based organic light-emitting diode: Implications for characteristic times and their distribution. Applied Physics Letters, 2013, 103, .	3.3	34
107	Formation of Organic Crystalline Nanopillar Arrays and Their Application to Organic Photovoltaic Cells. ACS Applied Materials & Samp; Interfaces, 2011, 3, 80-83.	8.0	49
108	Photophysical characteristics of 4,4′-bis(N-carbazolyl)tolan derivatives and their application in organic light emitting diodes. Journal of Luminescence, 2011, 131, 1520-1524.	3.1	11

#	Article	IF	Citations
109	Highly conductive interface between a rubrene single crystal and a molybdenum oxide layer and its application in transistors. Solid State Communications, 2011, 151, 93-96.	1.9	15
110	Emission Color Tuning in Ambipolar Organic Singleâ€Crystal Fieldâ€Effect Transistors by Dyeâ€Doping. Advanced Functional Materials, 2010, 20, 1610-1615.	14.9	77
111	Organic light-emitting diodes containing multilayers of organic single crystals. Applied Physics Letters, 2010, 96, .	3.3	51
112	Tuning of threshold voltage by interfacial carrier doping in organic single crystal ambipolar light-emitting transistors and their bright electroluminescence. Applied Physics Letters, 2009, 95, .	3.3	61
113	Low-Threshold Blue Emission from First-Order Organic DFB Laser Using 2,7-bis[4-(N-carbazole)phenylvinyl]-9,9′-Spirobifluorene as Active Gain Medium. Molecular Crystals and Liquid Crystals, 2009, 504, 1-8.	0.9	2
114	Highly balanced ambipolar mobilities with intense electroluminescence in field-effect transistors based on organic single crystal oligo(p-phenylenevinylene) derivatives. Applied Physics Letters, 2009, 95, 033308.	3.3	78
115	Effect of Molecular Morphology on Amplified Spontaneous Emission of Bisâ€ S tyrylbenzene Derivatives. Advanced Materials, 2009, 21, 4034-4038.	21.0	138
116	Spectrally Narrow Emission at Cutoff Wavelength from Edge of Electrically Pumped Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2007, 46, L826-L829.	1.5	17
117	Spectrally narrow emission from organic films under continuous-wave excitation. Applied Physics Letters, 2007, 90, 231109.	3.3	41
118	Ambipolar field-effect transistor based on organic-inorganic hybrid structure. Applied Physics Letters, 2007, 90, 262104.	3.3	42
119	Organic light emitting devices from OLED to organic laser diode. , 2007, , .		0
120	Frontier of organic light emitting devices. , 2007, , .		0
121	Extremely Lowâ€Threshold Amplified Spontaneous Emission of 9,9′â€Spirobifluorene Derivatives and Electroluminescence from Fieldâ€Effect Transistor Structure. Advanced Functional Materials, 2007, 17, 2328-2335.	14.9	124
122	Very low amplified spontaneous emission threshold and electroluminescence characteristics of $1,1\hat{a}\in^2$ -diphenyl substituted fluorene derivatives. Optical Materials, 2007, 30, 630-636.	3.6	11
123	Material and device structure design aiming for realization of organic semiconductor laser. The Review of Laser Engineering, 2007, 35, 27-28.	0.0	0
124	Optical and Electrical Properties of Bis(4-(phenylethynyl)phenyl)ethynes and Their Application to Organic Field-Effect Transistors. Japanese Journal of Applied Physics, 2006, 45, L1331-L1333.	1.5	10
125	Injection and Transport of High Current Density over 1000 A/cm2in Organic Light Emitting Diodes under Pulse Excitation. Japanese Journal of Applied Physics, 2005, 44, 3659-3662.	1.5	52
126	Low lasing threshold in organic distributed feedback solid state lasers using bisstyrylbenzene derivative as active material., 2005,,.		11

#	Article	IF	CITATIONS
127	Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Applied Physics Letters, 2005, 86, 213506.	3.3	92
128	Blue-Light-Emitting Ambipolar Field-Effect Transistors Using an Organic Single Crystal of 1,4-Bis(4-methylstyryl)benzene. Applied Physics Express, 0, 1, 091801.	2.4	60