Susana RodrÃ-guez-EcheverrÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3381179/publications.pdf

Version: 2024-02-01

79 papers

3,230 citations

36 h-index 54 g-index

84 all docs 84 docs citations

84 times ranked 3804 citing authors

#	Article	IF	CITATIONS
1	Azorella Cushion Plants and Aridity are Important Drivers of Soil Microbial Communities in Andean Ecosystems. Ecosystems, 2021, 24, 1576-1590.	3.4	10
2	Nuevos tiempos, nuevos cambios también para Ecosistemas. Ecosistemas, 2021, 30, 2213.	0.4	0
3	Landâ€use history alters the diversity, community composition and interaction networks of ectomycorrhizal fungi in beech forests. Journal of Ecology, 2021, 109, 2856-2870.	4.0	17
4	Exploring the use of residues from the invasive <i>Acacia</i> sp. for weed control. Renewable Agriculture and Food Systems, 2020, 35, 26-37.	1.8	16
5	Complex patterns in tolerance and resistance to pests and diseases underpin the domestication of tomato. New Phytologist, 2020, 226, 254-266.	7.3	24
6	Azorella compacta: survival champions in extreme, highâ€elevation environments. Ecosphere, 2020, 11, e03031.	2.2	6
7	Integrating plant species contribution to mycorrhizal and seed dispersal mutualistic networks. Biology Letters, 2019, 15, 20180770.	2.3	6
8	First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytologist, 2019, 222, 1054-1060.	7.3	48
9	Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes. Nature Communications, 2018, 9, 140.	12.8	52
10	Should I stay or should I go? Mycorrhizal plants are more likely to invest in longâ€distance seed dispersal than nonâ€mycorrhizal plants. Ecology Letters, 2018, 21, 683-691.	6.4	31
11	Funneliformis mosseae and Invasion by Exotic Legumes in a Brazilian Tropical Seasonal Dry Forest. Russian Journal of Ecology, 2018, 49, 500-506.	0.9	2
12	Diminishing importance of elaiosomes for acacia seed removal in non-native ranges. Evolutionary Ecology, 2018, 32, 601-621.	1.2	6
13	Mimicking a rainfall gradient to test the role of soil microbiota for mediating plant responses to drier conditions. Oikos, 2018, 127, 1776-1786.	2.7	17
14	The shift from plant–plant facilitation to competition under severe water deficit is spatially explicit. Ecology and Evolution, 2017, 7, 2441-2448.	1.9	45
15	Variation in seed packaging of a fleshyâ€fruited conifer provides insights into the ecology and evolution of multiâ€seeded fruits. Plant Biology, 2017, 19, 533-541.	3.8	3
16	Refaunation and the reinstatement of the seedâ€dispersal function in Gorongosa National Park. Conservation Biology, 2017, 31, 76-85.	4.7	49
17	Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytologist, 2017, 213, 380-390.	7.3	96
18	Premio al mejor revisor de Ecosistemas del bienio 2015-2016. Ecosistemas, 2017, 26, 89-89.	0.4	0

#	Article	IF	Citations
19	Ecosistemas: seguimos creciendo. Ecosistemas, 2017, 26, 86-87.	0.4	O
20	Premio "Ecosistemas―al mejor resumen de Tesis Doctoral publicado en 2016. Ecosistemas, 2017, 26, 90-90.	0.4	0
21	Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil?. Acta Botanica Brasilica, 2016, 30, 93-101.	0.8	21
22	Evidence for enemy release and increased seed production and size for two invasive Australian acacias. Journal of Ecology, 2016, 104, 1391-1399.	4.0	44
23	Trends in plant and soil microbial diversity associated with Mediterranean extensive cereal–fallow rotation agro-ecosystems. Agriculture, Ecosystems and Environment, 2016, 217, 33-40.	5.3	17
24	Two invasive acacia species secure generalist pollinators in invaded communities. Acta Oecologica, 2016, 74, 46-55.	1.1	20
25	Changes in microhabitat, but not allelopathy, affect plant establishment afterAcacia dealbatainvasion. Journal of Plant Ecology, 2016, , rtw061.	2.3	13
26	Identification of symbiotic nitrogen-fixing bacteria from three African leguminous trees in Gorongosa National Park. Systematic and Applied Microbiology, 2016, 39, 350-358.	2.8	12
27	Inconsistency in the detection of phytotoxic effects: A test with Acacia dealbata extracts using two different methods. Phytochemistry Letters, 2016, 15, 190-198.	1.2	11
28	Influence of soil microbiota in nurse plant systems. Functional Ecology, 2016, 30, 30-40.	3.6	59
29	Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid. Brazilian Journal of Microbiology, 2016, 47, 359-366.	2.0	30
30	Impacts of the alien trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. on soil nutrients and microbial communities. Soil Biology and Biochemistry, 2016, 96, 65-73.	8.8	29
31	Pre-dispersal predation effect on seed packaging strategies and seed viability. Oecologia, 2016, 180, 91-102.	2.0	14
32	I Simposio sobre interacciones planta-suelo (Madrid, 25-26 febrero 2016). Ecosistemas, 2016, 25, 114.	0.4	2
33	Is there a bias in participation and visibility against women in ecology? A comparison between Iberian and Swiss conferences., 2016, 25, 105-111.		O
34	Reproductive success of Acacia longifolia (Fabaceae, Mimosoideae) in native and invasive populations. Australian Journal of Botany, 2015, 63, 387.	0.6	13
35	Putative linkages between below- and aboveground mutualisms during alien plant invasions. AoB PLANTS, 2015, 7, plv062.	2.3	12
36	Invasion genetics of the <scp>B</scp> ermuda buttercup (<i><scp>O</scp>xalis pes aprae</i>): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations. Molecular Ecology, 2015, 24, 2143-2155.	3.9	37

#	Article	IF	CITATIONS
37	Transplanting native woody legumes: a suitable option for the revegetation of coastal dunes. Ecological Research, 2015, 30, 49-55.	1.5	3
38	Contrasting soil fungal communities in Mediterranean pine forests subjected to different wildfire frequencies. Fungal Diversity, 2015, 70, 85-99.	12.3	33
39	Effect of physiological integration in self/non-self genotype recognition on the clonal invader Carpobrotus edulis. Journal of Plant Ecology, 2014, 7, 413-418.	2.3	21
40	Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores). Symbiosis, 2014, 64, 73-85.	2.3	18
41	Disparate origins of <i>Bradyrhizobium </i> symbionts for invasive populations of <i>Cytisus scoparius </i> (<i>Leguminosae </i>) in North America. FEMS Microbiology Ecology, 2014, 89, 89-98.	2.7	34
42	Genetic Diversity and Differentiation of Juniperus thurifera in Spain and Morocco as Determined by SSR. PLoS ONE, 2014, 9, e88996.	2.5	80
43	Genetic diversity of root nodulating bacteria associated with Retama sphaerocarpa in sites with different soil and environmental conditions. Systematic and Applied Microbiology, 2014, 37, 305-310.	2.8	16
44	Reproductive biology and success of invasive Australian acacias in Portugal. Botanical Journal of the Linnean Society, 2014, 174, 574-588.	1.6	37
45	Adaptive plasticity to heterogeneous environments increases capacity for division of labor in the clonal invader <i>Carpobrotus edulis</i> (Aizoaceae). American Journal of Botany, 2014, 101, 1301-1308.	1.7	45
46	Developmentally-programmed division of labour in the clonal invader Carpobrotus edulis. Biological Invasions, 2013, 15, 1895-1905.	2.4	45
47	The effect of soil legacy on competition and invasion by Acacia dealbata Link. Plant Ecology, 2013, 214, 1139-1146.	1.6	58
48	A role for belowâ€ground biota in plant–plant facilitation. Journal of Ecology, 2013, 101, 1420-1428.	4.0	66
49	Differential impact on soil microbes of allelopathic compounds released by the invasive Acacia dealbata Link. Soil Biology and Biochemistry, 2013, 57, 156-163.	8.8	108
50	Co-introduction of exotic rhizobia to the rhizosphere of the invasive legume Acacia saligna, an intercontinental study. Applied Soil Ecology, 2013, 64, 118-126.	4.3	61
51	No allelopathic effect of the invader Acacia dealbata on the potential infectivity of arbuscular mycorrhizal fungi from native soils. European Journal of Soil Biology, 2013, 58, 42-44.	3.2	8
52	Influence of soil microorganisms, allelopathy and soil origin on the establishment of the invasive <i>Acacia dealbata</i> . Plant Ecology and Diversity, 2012, 5, 67-73.	2.4	23
53	Differential effectiveness of novel and old legume–rhizobia mutualisms: implications for invasion by exotic legumes. Oecologia, 2012, 170, 253-261.	2.0	71
54	Is the potential for the formation of common mycorrhizal networks influenced byÂfire frequency?. Soil Biology and Biochemistry, 2012, 46, 136-144.	8.8	32

#	Article	lF	CITATIONS
55	Jackâ€ofâ€allâ€trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian <i>Acacia</i> species?. Diversity and Distributions, 2011, 17, 946-957.	4.1	95
56	Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: Insights from a semi-arid Mediterranean environment. Journal of Vegetation Science, 2011, 22, 165-174.	2.2	95
57	A field test of the stress-gradient hypothesis along an aridity gradient. Journal of Vegetation Science, 2011, 22, 818-827.	2.2	153
58	Physiological integration increases the survival and growth of the clonal invader Carpobrotus edulis. Biological Invasions, 2010, 12, 1815-1823.	2.4	95
59	Plant-soil feedback as a mechanism of invasion by Carpobrotus edulis. Biological Invasions, 2010, 12, 3637-3648.	2.4	60
60	Rhizobial hitchhikers from Down Under: invasional meltdown in a plant–bacteria mutualism?. Journal of Biogeography, 2010, 37, 1611-1622.	3.0	64
61	Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biology, 2010, 114, 628-636.	2.5	77
62	Diversity of soil basidiomycete communities associated with Quercus suber L. in Portuguese montados. European Journal of Soil Biology, 2010, 46, 280-287.	3.2	10
63	Effect of invasive Acacia dealbata Link on soil microorganisms as determined by PCR-DGGE. Applied Soil Ecology, 2010, 44, 245-251.	4.3	107
64	Can root-feeders alter the composition of AMF communities? Experimental evidence from the dune grass Ammophila arenaria. Basic and Applied Ecology, 2009, 10, 131-140.	2.7	26
65	Belowground mutualists and the invasive ability of AcaciaÂlongifolia in coastal dunes of Portugal. Biological Invasions, 2009, 11, 651-661.	2.4	116
66	Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. International Biodeterioration and Biodegradation, 2009, 63, 626-629.	3.9	111
67	Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: Spore abundance and root colonisation in six locations of the European coast. European Journal of Soil Biology, 2008, 44, 30-36.	3.2	46
68	Genetic Diversity and Differentiation of Ammophila arenaria (L.) Link as Revealed by ISSR Markers. Journal of Coastal Research, 2008, 241, 122-126.	0.3	14
69	Genetic Diversity of Rhizobia Associated with Acacia longifolia in Two Stages of Invasion of Coastal Sand Dunes. Applied and Environmental Microbiology, 2007, 73, 5066-5070.	3.1	38
70	Biodiversity and Interactions in the Rhizosphere. Books in Soils, Plants, and the Environment, 2007, , .	0.1	0
71	Nematode Interactions in Nature: Models for Sustainable Control of Nematode Pests of Crop Plants?. Advances in Agronomy, 2006, 89, 227-260.	5.2	54
72	Mechanism of control of rootâ€feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytologist, 2006, 169, 829-840.	7.3	166

#	Article	IF	CITATION
73	Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes. Mycorrhiza, 2006, 16, 543-552.	2.8	55
74	Potential use of Iberian shrubby legumes and rhizobia inoculation in revegetation projects under acidic soil conditions. Applied Soil Ecology, 2005, 29, 203-208.	4.3	39
75	Effect of smoke, charred wood, and nitrogenous compounds on seed germination of ten species from woodland in central-western Spain. Journal of Chemical Ecology, 2003, 29, 237-251.	1.8	85
76	Analysis of the legume-rhizobia symbiosis in shrubs from central western Spain. Journal of Applied Microbiology, 2003, 95, 1367-1374.	3.1	64
77	Soil fertility and herb facilitation mediated by Retama sphaerocarpa. Journal of Vegetation Science, 2003, 14, 807-814.	2.2	57
78	Seasonal variation in AMF colonisation, soil and plant nutrient content in gypsum specialist and generalist species growing in P-poor soils. Plant and Soil, 0 , 1 .	3.7	8
79	Invasional meltdown via horizontal gene transfer of a European symbiosis island variant in North American nodule symbionts of Cytisus scoparius. Biological Invasions, 0 , 1 .	2.4	O