Dehua Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3380883/publications.pdf

Version: 2024-02-01

167 papers 8,344 citations

53
h-index

71088 80 g-index

204 all docs

204 docs citations

times ranked

204

8057 citing authors

#	Article	IF	CITATIONS
1	Assessing the Cellular Uptake, , and Cytosolic Entry Efficiencies of. Methods in Molecular Biology, 2022, 2371, 301-316.	0.4	1
2	Targeting G \hat{l} ±i/s Proteins with Peptidyl Nucleotide Exchange Modulators. ACS Chemical Biology, 2022, 17, 463-473.	1.6	7
3	How Do Biomolecules Cross the Cell Membrane?. Accounts of Chemical Research, 2022, 55, 309-318.	7.6	35
4	Targeting intracellular protein–protein interactions with macrocyclic peptides. Trends in Pharmacological Sciences, 2022, 43, 234-248.	4.0	23
5	Discovery of a Cyclic Cell-Penetrating Peptide with Improved Endosomal Escape and Cytosolic Delivery Efficiency. Molecular Pharmaceutics, 2022, 19, 1378-1388.	2.3	5
6	Membrane translocation of folded proteins. Journal of Biological Chemistry, 2022, 298, 102107.	1.6	3
7	Can acute respiratory distress syndrome be treated?. Future Medicinal Chemistry, 2021, 13, 687-690.	1.1	1
8	An intracellular nanobody targeting T4SS effector inhibits <i>Ehrlichia</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
9	Discovery of a Bicyclic Peptidyl Pan-Ras Inhibitor. Journal of Medicinal Chemistry, 2021, 64, 13038-13053.	2.9	15
10	Bacterial Toxins Escape the Endosome by Inducing Vesicle Budding and Collapse. ACS Chemical Biology, 2021, 16, 2415-2422.	1.6	2
11	Development of a Cell-Permeable Cyclic Peptidyl Inhibitor against the Keap1–Nrf2 Interaction. Journal of Organic Chemistry, 2020, 85, 1416-1424.	1.7	26
12	A Peptidyl Inhibitor that Blocks Calcineurin–NFAT Interaction and Prevents Acute Lung Injury. Journal of Medicinal Chemistry, 2020, 63, 12853-12872.	2.9	9
13	Rational design of cell-permeable cyclic peptides containing a d-Pro-l-Pro motif. Bioorganic and Medicinal Chemistry, 2020, 28, 115711.	1.4	10
14	Cell-Penetrating Peptides Escape the Endosome by Inducing Vesicle Budding and Collapse. ACS Chemical Biology, 2020, 15, 2485-2492.	1.6	53
15	Engineering Cell-Permeable Proteins through Insertion of Cell-Penetrating Motifs into Surface Loops. ACS Chemical Biology, 2020, 15, 2568-2576.	1.6	15
16	Cyclic Peptidyl Inhibitors against CAL/CFTR Interaction for Treatment of Cystic Fibrosis. Journal of Medicinal Chemistry, 2020, 63, 15773-15784.	2.9	18
17	Cell-penetrating and mitochondrion-targeting molecules. Methods in Enzymology, 2020, 641, 311-328.	0.4	4
18	Developments with bead-based screening for novel drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 1097-1102.	2.5	12

#	Article	IF	Citations
19	Cyclic Cellâ€Penetrating Peptides with Single Hydrophobic Groups. ChemBioChem, 2019, 20, 2085-2088.	1.3	22
20	Serine proteases: how did chemists tease out their catalytic mechanism?. ChemTexts, 2019, 5, 1.	1.0	6
21	Enhancing the Cell Permeability of Stapled Peptides with a Cyclic Cell-Penetrating Peptide. Journal of Medicinal Chemistry, 2019, 62, 10098-10107.	2.9	61
22	Designing Cell-Permeable Macrocyclic Peptides. Methods in Molecular Biology, 2019, 2001, 41-59.	0.4	11
23	Understanding Cell Penetration of Cyclic Peptides. Chemical Reviews, 2019, 119, 10241-10287.	23.0	324
24	Crystal structure of the RedÎ ² C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with i> Escherichia coli (i> single stranded DNA binding protein. Nucleic Acids Research, 2019, 47, 1950-1963.	6.5	25
25	Overcoming Endosomal Entrapment in Drug Delivery. Bioconjugate Chemistry, 2019, 30, 273-283.	1.8	223
26	Inhibition of peptidyl-prolyl isomerase (PIN1) and BRAF signaling to target melanoma. American Journal of Translational Research (discontinued), 2019, 11, 4425-4437.	0.0	0
27	Targeting Ras with Macromolecules. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031476.	2.9	13
28	Nonâ€Peptidic Cellâ€Penetrating Motifs for Mitochondrionâ€Specific Cargo Delivery. Angewandte Chemie - International Edition, 2018, 57, 17183-17188.	7.2	32
29	Nonâ€Peptidic Cellâ€Penetrating Motifs for Mitochondrionâ€Specific Cargo Delivery. Angewandte Chemie, 2018, 130, 17429-17434.	1.6	8
30	Cell-Permeable Bicyclic Peptidyl Inhibitors against NEMO-lήB Kinase Interaction Directly from a Combinatorial Library. Journal of the American Chemical Society, 2018, 140, 12102-12110.	6.6	52
31	Inhibition of nuclear factor of activated T cells (NFAT) c3 activation attenuates acute lung injury and pulmonary edema in murine models of sepsis. Oncotarget, 2018, 9, 10606-10620.	0.8	22
32	Generation of a cell-permeable cycloheptapeptidyl inhibitor against the peptidyl–prolyl isomerase Pin1. Organic and Biomolecular Chemistry, 2017, 15, 4540-4543.	1.5	17
33	Bicyclic Peptides as Nextâ€Generation Therapeutics. Chemistry - A European Journal, 2017, 23, 12690-12703.	1.7	109
34	Targeting intracellular protein–protein interactions with cell-permeable cyclic peptides. Current Opinion in Chemical Biology, 2017, 38, 80-86.	2.8	101
35	Macrocycles as protein–protein interaction inhibitors. Biochemical Journal, 2017, 474, 1109-1125.	1.7	133
36	Enhancing the Cell Permeability and Metabolic Stability of Peptidyl Drugs by Reversible Bicyclization. Angewandte Chemie - International Edition, 2017, 56, 1525-1529.	7.2	64

#	Article	IF	Citations
37	Enhancing the Cell Permeability and Metabolic Stability of Peptidyl Drugs by Reversible Bicyclization. Angewandte Chemie, 2017, 129, 1547-1551.	1.6	3
38	Cell-permeable bicyclic peptidyl inhibitors against T-cell protein tyrosine phosphatase from a combinatorial library. Organic and Biomolecular Chemistry, 2017, 15, 9595-9598.	1.5	16
39	Frontispiece: Bicyclic Peptides as Nextâ€Generation Therapeutics. Chemistry - A European Journal, 2017, 23, .	1.7	O
40	Discovery and Mechanism of Highly Efficient Cyclic Cell-Penetrating Peptides. Biochemistry, 2016, 55, 2601-2612.	1.2	232
41	Discovery of a Direct Ras Inhibitor by Screening a Combinatorial Library of Cell-Permeable Bicyclic Peptides. ACS Combinatorial Science, 2016, 18, 75-85.	3.8	103
42	Screening One-Bead-One-Compound Peptide Libraries for Optimal Kinase Substrates. Methods in Molecular Biology, 2016, 1360, 169-181.	0.4	1
43	LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. Journal of Clinical Investigation, 2016, 126, 1267-1281.	3.9	67
44	Direct Inhibitors of Ras-Effector Protein Interactions. Mini-Reviews in Medicinal Chemistry, 2016, 16, 376-382.	1.1	11
45	Monitoring the cytosolic entry of cell-penetrating peptides using a pH-sensitive fluorophore. Chemical Communications, 2015, 51, 2162-2165.	2.2	76
46	Intracellular Delivery of Peptidyl Ligands by Reversible Cyclization: Discovery of a PDZ Domain Inhibitor that Rescues CFTR Activity. Angewandte Chemie - International Edition, 2015, 54, 5874-5878.	7.2	68
47	A Selective, Cell-Permeable Nonphosphorylated Bicyclic Peptidyl Inhibitor against Peptidyl–Prolyl Isomerase Pin1. Journal of Medicinal Chemistry, 2015, 58, 6306-6312.	2.9	35
48	Inhibition of Ras Signaling by Blocking Ras–Effector Interactions with Cyclic Peptides. Angewandte Chemie - International Edition, 2015, 54, 7602-7606.	7.2	132
49	Synthesis and Screening of One-Bead-One-Compound Cyclic Peptide Libraries. Methods in Molecular Biology, 2015, 1248, 39-53.	0.4	36
50	Diverse Levels of Sequence Selectivity and Catalytic Efficiency of Protein-Tyrosine Phosphatases. Biochemistry, 2014, 53, 397-412.	1.2	51
51	Cell-Permeable Bicyclic Peptide Inhibitors against Intracellular Proteins. Journal of the American Chemical Society, 2014, 136, 9830-9833.	6.6	111
52	Structure-Based Optimization of a Peptidyl Inhibitor against Calcineurin-Nuclear Factor of Activated T Cell (NFAT) Interaction. Journal of Medicinal Chemistry, 2014, 57, 7792-7797.	2.9	10
53	Direct Ras inhibitors identified from a structurally rigidified bicyclic peptide library. Tetrahedron, 2014, 70, 7714-7720.	1.0	31
54	Early Endosomal Escape of a Cyclic Cell-Penetrating Peptide Allows Effective Cytosolic Cargo Delivery. Biochemistry, 2014, 53, 4034-4046.	1.2	147

#	Article	IF	Citations
55	Screening Bicyclic Peptide Libraries for Protein–Protein Interaction Inhibitors: Discovery of a Tumor Necrosis Factor-α Antagonist. Journal of the American Chemical Society, 2013, 135, 11990-11995.	6.6	121
56	Efficient Delivery of Cyclic Peptides into Mammalian Cells with Short Sequence Motifs. ACS Chemical Biology, 2013, 8, 423-431.	1.6	160
57	Profiling the Substrate Specificity of Protein Kinases by On-Bead Screening of Peptide Libraries. Biochemistry, 2013, 52, 5645-5655.	1.2	21
58	Inhibition of Ras–effector interactions by cyclic peptides. MedChemComm, 2013, 4, 378-382.	3.5	53
59	Global Analysis of Peptide Cyclization Efficiency. ACS Combinatorial Science, 2013, 15, 120-129.	3.8	74
60	Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases. Journal of Proteomics, 2013, 81, 56-69.	1.2	8
61	Specificity Profiling of Dual Specificity Phosphatase Vaccinia VH1-related (VHR) Reveals Two Distinct Substrate Binding Modes*. Journal of Biological Chemistry, 2013, 288, 6498-6510.	1.6	14
62	Specificity Profiling of Protein Phosphatases toward Phosphoseryl and Phosphothreonyl Peptides. Journal of the American Chemical Society, 2013, 135, 9760-9767.	6.6	15
63	Cyclic Peptide Inhibitors of HIV-1 Capsid-Human Lysyl-tRNA Synthetase Interaction. ACS Chemical Biology, 2012, 7, 761-769.	1.6	34
64	Specificity Profiling of Proteinâ€Binding Domains Using Oneâ€Beadâ€Oneâ€Compound Peptide Libraries. Current Protocols in Chemical Biology, 2012, 4, 331-355.	1.7	8
65	Distinct Ligand Specificity of the Tiam1 and Tiam2 PDZ Domains. Biochemistry, 2011, 50, 1296-1308.	1.2	31
66	High-Throughput Screening of One-Bead-One-Compound Libraries: Identification of Cyclic Peptidyl Inhibitors against Calcineurin/NFAT Interaction. ACS Combinatorial Science, 2011, 13, 537-546.	3.8	63
67	Creating Diverse Target-Binding Surfaces on FKBP12: Synthesis and Evaluation of a Rapamycin Analogue Library. ACS Combinatorial Science, 2011, 13, 486-495.	3.8	33
68	Substrate Specificity of Protein Tyrosine Phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry, 2011, 50, 2339-2356.	1.2	87
69	Simultaneous Binding of Two Peptidyl Ligands by a Src Homology 2 Domain. Biochemistry, 2011, 50, 7637-7646.	1.2	29
70	Inhibition of LuxS by S-ribosylhomocysteine analogues containing a [4-aza]ribose ring. Bioorganic and Medicinal Chemistry, 2011, 19, 5507-5519.	1.4	33
71	Identification of a Key Amino Acid of LuxS Involved in Al-2 Production in Campylobacter jejuni. PLoS ONE, 2011, 6, e15876.	1.1	31
72	On-Bead Library Screening Made Easier. Chemistry and Biology, 2010, 17, 3-4.	6.2	13

#	Article	IF	CITATIONS
73	Determination of the Substrate Specificity of Protein-tyrosine Phosphatase TULA-2 and Identification of Syk as a TULA-2 Substrate. Journal of Biological Chemistry, 2010, 285, 31268-31276.	1.6	47
74	HDAC6 and Ubp-M BUZ Domains Recognize Specific C-Terminal Sequences of Proteins. Biochemistry, 2010, 49, 10737-10746.	1.2	24
75	Membrane Permeable Cyclic Peptidyl Inhibitors against Human Peptidylprolyl Isomerase Pin1. Journal of Medicinal Chemistry, 2010, 53, 2494-2501.	2.9	78
76	Protein N-Terminal Processing: Substrate Specificity of <i>Escherichia coli</i> and Human Methionine Aminopeptidases. Biochemistry, 2010, 49, 5588-5599.	1.2	146
77	Inhibition of S-ribosylhomocysteinase (LuxS) by substrate analogues modified at the ribosyl C-3 position. Bioorganic and Medicinal Chemistry, 2009, 17, 6699-6706.	1.4	33
78	Synthesis and screening of a cyclic peptide library: Discovery of small-molecule ligands against human prolactin receptor. Bioorganic and Medicinal Chemistry, 2009, 17, 1026-1033.	1.4	51
79	Probing the Catalytic Mechanism of <i>S</i> -Ribosylhomocysteinase (LuxS) with Catalytic Intermediates and Substrate Analogues. Journal of the American Chemical Society, 2009, 131, 1243-1250.	6.6	40
80	On-Bead Screening of Combinatorial Libraries: Reduction of Nonspecific Binding by Decreasing Surface Ligand Density. ACS Combinatorial Science, 2009, 11, 604-611.	3.3	65
81	Profiling the Substrate Specificity of Viral Protease VP4 by a FRET-Based Peptide Library Approach. Biochemistry, 2009, 48, 5753-5759.	1.2	12
82	High-Throughput Sequencing of Peptoids and Peptideâ^'Peptoid Hybrids by Partial Edman Degradation and Mass Spectrometry. ACS Combinatorial Science, 2009, 11, 294-302.	3.3	63
83	The SH2 Domains of Inositol Polyphosphate 5-Phosphatases SHIP1 and SHIP2 Have Similar Ligand Specificity but Different Binding Kinetics. Biochemistry, 2009, 48, 11075-11083.	1.2	22
84	S-Ribosylhomocysteine analogues with the carbon-5 and sulfur atoms replaced by a vinyl or (fluoro)vinyl unit. Bioorganic and Medicinal Chemistry, 2008, 16, 5090-5102.	1.4	36
85	Design and synthesis of macrocyclic peptidyl hydroxamates as peptide deformylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3060-3063.	1.0	19
86	Synthesis of 3,5-Difluorotyrosine-Containing Peptides: Application in Substrate Profiling of Protein Tyrosine Phosphatases. Organic Letters, 2008, 10, 4605-4608.	2.4	8
87	Cyclic Peptidyl Inhibitors of Grb2 and Tensin SH2 Domains Identified from Combinatorial Libraries. ACS Combinatorial Science, 2008, 10, 247-255.	3.3	33
88	A LuxP-Based Fluorescent Sensor for Bacterial Autoinducer II. ACS Chemical Biology, 2008, 3, 110-119.	1.6	39
89	Synthesis and Screening of Support-Bound Combinatorial Peptide Libraries with Free C-Termini: Determination of the Sequence Specificity of PDZ Domains. Biochemistry, 2008, 47, 3061-3072.	1.2	18
90	High-Throughput Screening of Peptide Deformylase Inhibitors. Methods in Molecular Medicine, 2008, 142, 117-130.	0.8	6

#	Article	IF	CITATIONS
91	Altered -3 Substrate Specificity of Escherichia coli Signal Peptidase 1 Mutants as Revealed by Screening a Combinatorial Peptide Library. Journal of Biological Chemistry, 2007, 282, 417-425.	1.6	18
92	Defining SH2 domain and PTP specificity by screening combinatorial peptide libraries. Methods, 2007, 42, 207-219.	1.9	38
93	Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase. Archives of Biochemistry and Biophysics, 2007, 468, 217-225.	1.4	36
94	High-Throughput Synthesis and Screening of Cyclic Peptide Antibiotics. Journal of Medicinal Chemistry, 2007, 50, 3132-3137.	2.9	53
95	Reverse interactomics: decoding protein–protein interactions with combinatorial peptide libraries. Molecular BioSystems, 2007, 3, 536-541.	2.9	12
96	A Chemical Approach to the Identification of Tensin-Binding Proteins. ACS Chemical Biology, 2007, 2, 109-118.	1.6	26
97	Substrate Profiling of Protein Tyrosine Phosphatase PTP1B by Screening a Combinatorial Peptide Library. Journal of the American Chemical Society, 2007, 129, 5366-5367.	6.6	50
98	A LuxP-FRET-Based Reporter for the Detection and Quantification of Al-2 Bacterial Quorum-Sensing Signal Compounds. Biochemistry, 2007, 46, 3990-3997.	1.2	41
99	Determination of the Sequence Specificity of XIAP BIR Domains by Screening a Combinatorial Peptide Libraryâ€. Biochemistry, 2006, 45, 14740-14748.	1.2	22
100	Catalytic Mechanism of S-Ribosylhomocysteinase: Ionization State of Active-Site Residuesâ€. Biochemistry, 2006, 45, 12195-12203.	1.2	14
101	Design and Synthesis of Substrate and Intermediate Analogue Inhibitors of S-Ribosylhomocysteinase. Journal of Medicinal Chemistry, 2006, 49, 3003-3011.	2.9	82
102	High-Throughput Sequence Determination of Cyclic Peptide Library Members by Partial Edman Degradation/Mass Spectrometry. Journal of the American Chemical Society, 2006, 128, 13000-13009.	6.6	106
103	Traceless Capping Agent for Peptide Sequencing by Partial Edman Degradation and Mass Spectrometry. Analytical Chemistry, 2006, 78, 5935-5939.	3.2	67
104	Mechanism of triptolide-induced apoptosis: effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide. Journal of Molecular Medicine, 2006, 84, 405-415.	1.7	45
105	Sequence Specificity of SHP-1 and SHP-2 Src Homology 2 Domains. Journal of Biological Chemistry, 2006, 281, 20271-20282.	1.6	59
106	Mechanism of Triptolideâ€induced Apoptosis: Effect on Caspase Activation and Bid Cleavage and Essentiality of the Hydroxyl Group of Triptolide. FASEB Journal, 2006, 20, A123.	0.2	0
107	Purification and Characterization of Enzymes Involved in the Degradation of Chemotactic N-Formyl Peptides. Biochemistry, 2005, 44, 8514-8522.	1.2	14
108	Alternative Mode of Binding to Phosphotyrosyl Peptides by Src Homology-2 Domains. Biochemistry, 2005, 44, 12196-12202.	1.2	15

#	Article	IF	Citations
109	Crystal Structure of S-Ribosylhomocysteinase (LuxS) in Complex with a Catalytic 2-Ketone Intermediateâ€,‡. Biochemistry, 2005, 44, 3745-3753.	1.2	45
110	Decoding Proteinâ^'Protein Interactions through Combinatorial Chemistry:  Sequence Specificity of SHP-1, SHP-2, and SHIP SH2 Domains. Biochemistry, 2005, 44, 14932-14947.	1.2	125
111	An improved crystal form of Plasmodium falciparum peptide deformylase. Protein Science, 2004, 13, 1155-1163.	3.1	26
112	Slow-binding inhibition of peptide deformylase by cyclic peptidomimetics as revealed by a new spectrophotometric assay. Bioorganic Chemistry, 2004, 32, 178-191.	2.0	10
113	Peptidyl hydroxamic acids as methionine aminopeptidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 77-79.	1.0	34
114	Mechanism of action of S-ribosylhomocysteinase (LuxS). Current Opinion in Chemical Biology, 2004, 8, 492-497.	2.8	77
115	Peptidyl aldehydes as slow-binding inhibitors of dual-specificity phosphatases. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 685-687.	1.0	12
116	Macrocyclic Inhibitors for Peptide Deformylase:Â A Structureâ [^] Activity Relationship Study of the Ring Size. Journal of Medicinal Chemistry, 2004, 47, 4941-4949.	2.9	49
117	5-(2-Aminoethyl)dithio-2-nitrobenzoate as a More Base-Stable Alternative to Ellman's Reagent. Organic Letters, 2004, 6, 3809-3812.	2.4	63
118	Identification of \hat{l}_{\pm} -Galactosyl Epitope Mimetics through Rapid Generation and Screening of C-Linked Glycopeptide Library. ACS Combinatorial Science, 2004, 6, 126-134.	3.3	16
119	trans-β-Nitrostyrene Derivatives as Slow-Binding Inhibitors of Protein Tyrosine Phosphatasesâ€. Biochemistry, 2004, 43, 15014-15021.	1.2	46
120	Catalytic Mechanism of S-Ribosylhomocysteinase (LuxS): Stereochemical Course and Kinetic Isotope Effect of Proton Transfer Reactionsâ€,‡. Biochemistry, 2004, 43, 10166-10172.	1.2	39
121	Structure-Based Design of a Macrocyclic Inhibitor for Peptide Deformylase. Journal of Medicinal Chemistry, 2003, 46, 3771-3774.	2.9	54
122	Catalytic Mechanism of S-Ribosylhomocysteinase (LuxS):Â Direct Observation of Ketone Intermediates by 13C NMR Spectroscopy. Journal of the American Chemical Society, 2003, 125, 13379-13381.	6.6	50
123	S-Ribosylhomocysteinase (LuxS) Is a Mononuclear Iron Proteinâ€. Biochemistry, 2003, 42, 4717-4726.	1.2	97
124	An Improved Method for Rapid Sequencing of Support-Bound Peptides by Partial Edman Degradation and Mass Spectrometry. ACS Combinatorial Science, 2003, 5, 218-222.	3.3	40
125	Characterization of a Human Peptide Deformylase: Implications for Antibacterial Drug Designâ€. Biochemistry, 2003, 42, 9952-9958.	1.2	103
126	Peptidyl Aldehydes as Reversible Covalent Inhibitors of Src Homology 2 Domainsâ€. Biochemistry, 2003, 42, 5159-5167.	1.2	21

#	Article	IF	CITATIONS
127	Determination of the Ionization State and Catalytic Function of Glu-133 in Peptide Deformylase by Difference FTIR Spectroscopy. Biochemistry, 2002, 41, 10563-10569.	1.2	17
128	Screening Combinatorial Libraries by Mass Spectrometry. 2. Identification of Optimal Substrates of Protein Tyrosine Phosphatase SHP-1â€. Biochemistry, 2002, 41, 6202-6210.	1.2	37
129	Peptidyl Aldehydes as Reversible Covalent Inhibitors of Protein Tyrosine Phosphatases. Biochemistry, 2002, 41, 10700-10709.	1.2	43
130	Crystals of Peptide Deformylase from Plasmodium falciparum Reveal Critical Characteristics of the Active Site for Drug Design. Structure, 2002, 10, 357-367.	1.6	43
131	α-Bromoacetophenone derivatives as neutral protein tyrosine phosphatase inhibitors: structure–Activity relationship. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3047-3050.	1.0	37
132	Characterization of an Eukaryotic Peptide Deformylase from Plasmodium falciparum. Archives of Biochemistry and Biophysics, 2001, 396, 162-170.	1.4	63
133	Rapid Sequencing of Library-Derived Peptides by Partial Edman Degradation and Mass Spectrometry. ACS Combinatorial Science, 2001, 3, 251-254.	3.3	36
134	Screening combinatorial libraries for optimal enzyme substrates by mass spectrometry. Rapid Communications in Mass Spectrometry, 2001, 15, 1166-1171.	0.7	15
135	Peptide deformylase: a target for novel antibiotics?. Expert Opinion on Therapeutic Targets, 2001, 5, 23-40.	1.0	32
136	Two Continuous Spectrophotometric Assays for Methionine Aminopeptidase. Analytical Biochemistry, 2000, 280, 159-165.	1.1	50
137	Activation of antibacterial prodrugs by peptide deformylase. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1073-1076.	1.0	21
138	II. Structure and specificity of the interaction between the FHA2 domain of rad53 and phosphotyrosyl peptides. Journal of Molecular Biology, 2000, 302, 927-940.	2.0	53
139	Structure of the FHA1 Domain of Yeast Rad53 and Identification of Binding Sites for both FHA1 and its Target Protein Rad9. Journal of Molecular Biology, 2000, 304, 941-951.	2.0	77
140	Characterization of Cobalt(II)-Substituted Peptide Deformylase:  Function of the Metal Ion and the Catalytic Residue Glu-133. Biochemistry, 2000, 39, 779-790.	1.2	111
141	Identification of a Potent Peptide Deformylase Inhibitor from a Rationally Designed Combinatorial Library. ACS Combinatorial Science, 2000, 2, 650-657.	3.3	35
142	Determination of the Binding Specificity of the SH2 Domains of Protein Tyrosine Phosphatase SHP-1 through the Screening of a Combinatorial Phosphotyrosyl Peptide Libraryâ€. Biochemistry, 2000, 39, 13251-13260.	1.2	60
143	Substrate Recognition through a PDZ Domain in Tail-Specific Proteaseâ€. Biochemistry, 2000, 39, 3149-3155.	1.2	85
144	Synthesis and Antibacterial Activity of Peptide Deformylase Inhibitorsâ€. Biochemistry, 2000, 39, 4543-4551.	1.2	69

#	Article	IF	Citations
145	A Direct Spectrophotometric Assay for Peptide Deformylase. Analytical Biochemistry, 1999, 273, 298-304.	1.1	12
146	Slow-Binding Inhibition of the Aminopeptidase fromAeromonasproteolyticaby Peptide Thiols: Synthesis and Spectroscopic Characterizationâ€. Biochemistry, 1999, 38, 15587-15596.	1.2	30
147	Structural Basis for the Design of Antibiotics Targeting Peptide Deformylaseâ€,‡. Biochemistry, 1999, 38, 4712-4719.	1.2	75
148	α-Haloacetophenone Derivatives As Photoreversible Covalent Inhibitors of Protein Tyrosine Phosphatases. Journal of the American Chemical Society, 1999, 121, 5085-5086.	6.6	124
149	Determination of Substrate Specificity for Peptide Deformylase through the Screening of a Combinatorial Peptide Library. Biochemistry, 1999, 38, 643-650.	1.2	59
150	A Continuous Fluorimetric Assay for Tail-Specific Protease. Analytical Biochemistry, 1998, 263, 51-56.	1.1	8
151	A photoactivated prodrug. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2419-2422.	1.0	28
152	H-phosphonate derivatives as novel peptide deformylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2479-2482.	1.0	32
153	Oxygen-mediated Inactivation of Peptide Deformylase. Journal of Biological Chemistry, 1998, 273, 22305-22310.	1.6	78
154	Peptide Deformylase:Â A New Type of Mononuclear Iron Protein. Journal of the American Chemical Society, 1997, 119, 12418-12419.	6.6	146
155	Crystal Structure of theEscherichia coliPeptide Deformylaseâ€,‡. Biochemistry, 1997, 36, 13904-13909.	1.2	131
156	Purification, Characterization, and Inhibition of Peptide Deformylase fromEscherichia coliâ€. Biochemistry, 1997, 36, 13910-13918.	1.2	115
157	Continuous Spectrophotometric Assay of Peptide Deformylase. Analytical Biochemistry, 1997, 250, 29-34.	1.1	45
158	The stress response to ionizing radiation involoves c-Abl-dependent phosphorylation of SHPTP1 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6898-6901.	3.3	85
159	Differential functions of the two Src homology 2 domains in protein tyrosine phosphatase SH-PTP1 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1141-1145.	3.3	139
160	Intramolecular Regulation of Protein Tyrosine Phosphatase SH-PTP1: A New Function for Src Homology 2 Domains. Biochemistry, 1994, 33, 15483-15493.	1.2	202
161	Overexpression, purification, and characterization of SHPTP1, a Src homology 2-containing protein-tyrosine-phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1092-1096.	3.3	69
162	Engineering protein specificity: gene manipulation with semisynthetic nucleases. Journal of the American Chemical Society, 1991, 113, 9398-9400.	6.6	23

DEHUA PEI

#	ARTICLE	IF	CITATIONS
163	A combinatorial approach toward DNA recognition. Science, 1991, 253, 1408-1411.	6.0	62
164	Site-specific cleavage of duplex DNA by a semisynthetic nuclease via triple-helix formation Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9858-9862.	3.3	69
165	Site-specific cleavage of duplex DNA with a .lambda. repressor-staphylococcal nuclease hybrid. Journal of the American Chemical Society, 1990, 112, 4579-4580.	6.6	23
166	Generation of a catalytic sequence-specific hybrid DNase. Biochemistry, 1989, 28, 8277-8286.	1.2	40
167	Sequence-selective hydrolysis of duplex DNA by an oligonucleotide-directed nuclease. Journal of the American Chemical Society, 1989, 111, 8523-8525.	6.6	56