
Raquel Sainz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/338029/publications.pdf Version: 2024-02-01

PAQUEL SAINT

#	Article	IF	CITATIONS
1	Asbestosâ€like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie - International Edition, 2013, 52, 2274-2278.	13.8	153
2	Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chemical Communications, 2010, 46, 1494-1496.	4.1	131
3	Effect of Cu-doped graphene on the flammability and thermal properties of epoxy composites. Composites Part B: Engineering, 2016, 89, 108-116.	12.0	72
4	Carbon Nanotube Effect on Polyaniline Morphology in Water Dispersible Composites. Journal of Physical Chemistry B, 2010, 114, 1579-1585.	2.6	64
5	Synthesis and Properties of Optically Active Polyaniline Carbon Nanotube Composites. Macromolecules, 2006, 39, 7324-7332.	4.8	63
6	Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes. Carbon, 2010, 48, 2447-2454.	10.3	48
7	Optically Active Polymer Carbon Nanotube Composite. Journal of Physical Chemistry B, 2005, 109, 22725-22729.	2.6	47
8	Reduced graphene oxide supported piperazine in aminocatalysis. Chemical Communications, 2014, 50, 6270.	4.1	47
9	Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction. Electrochimica Acta, 2016, 191, 500-509.	5.2	40
10	Chemically synthesized chevron-like graphene nanoribbons for electrochemical sensors development: determination of epinephrine. Scientific Reports, 2020, 10, 14614.	3.3	40
11	Colloidal processing of fully stabilized zirconia laminates comprising graphene oxide-enriched layers. Journal of the European Ceramic Society, 2016, 36, 1797-1804.	5.7	26
12	Biomedical Applications of Functionalised Carbon Nanotubes. Carbon Materials, 2008, , 23-50.	1.2	23
13	Carbon Nanotube Mediated Reduction in Optical Activity in Polyaniline Composite Materials. Journal of Physical Chemistry C, 2008, 112, 1441-1445.	3.1	15
14	Lactate biosensing based on covalent immobilization of lactate oxidase onto chevron-like graphene nanoribbons via diazotization-coupling reaction. Analytica Chimica Acta, 2022, 1208, 339851.	5.4	14
15	Unexpected reactivity of graphene oxide with DBU and DMF. Journal of Materials Chemistry A, 2018, 6, 12637-12646.	10.3	12
16	A Study of Grapheneâ€Based Copper Catalysts: Copper(I) Nanoplatelets for Batch and Continuousâ€Flow Applications. Chemistry - an Asian Journal, 2019, 14, 3011-3018.	3.3	9
17	Graphene oxide activates B cells with upregulation of granzyme B expression: evidence at the single-cell level for its immune-modulatory properties and anticancer activity. Nanoscale, 2022, 14, 333-349.	5.6	9
18	Evaluation of the role of graphene-based Cu(<scp>i</scp>) catalysts in borylation reactions. Catalysis Science and Technology, 2021, 11, 3501-3513.	4.1	8

#	Article	IF	CITATIONS
19	The effect of non-ionic surfactants on the sustainable synthesis of selected MOFs. Catalysis Today, 2022, 390-391, 316-325.	4.4	3