Shad B Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3380198/publications.pdf

Version: 2024-02-01

117625 149698 5,484 59 34 56 h-index citations g-index papers 61 61 61 7642 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Modeling Secondary Phenotypes Conditional on Genotypes in Case–Control Studies. Stats, 2022, 5, 203-214.	0.9	O
2	Multi-ethnic GWAS and meta-analysis of sleep quality identify MPP6 as a novel gene that functions in sleep center neurons. Sleep, 2021, 44, .	1.1	5
3	Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry. American Journal of Human Genetics, 2021, 108, 564-582.	6.2	18
4	Phenotypic profile clustering pragmatically identifies diagnostically and mechanistically informative subgroups of chronic pain patients. Pain, 2021, 162, 1528-1538.	4.2	19
5	A genetic polymorphism that is associated with mitochondrial energy metabolism increases risk of fibromyalgia. Pain, 2020, 161, 2860-2871.	4.2	17
6	Reversion mutation of cDNA CA8-204 minigene construct produces a truncated functional peptide that regulates calcium release in vitro and produces profound analgesia in vivo. Mammalian Genome, 2020, 31, 287-294.	2.2	1
7	Clinical Pain Phenotyping for Omics Studies. , 2020, , 49-71.		O
8	Disentangling the genetics of lean mass. American Journal of Clinical Nutrition, 2019, 109, 276-287.	4.7	38
9	A functional substitution in the Lâ€aromatic amino acid decarboxylase enzyme worsens somatic symptoms via a serotonergic pathway. Annals of Neurology, 2019, 86, 168-180.	5. 3	9
10	Profound analgesia is associated with a truncated peptide resulting from tissue specific alternative splicing of DRG CA8-204 regulated by an exon-level cis-eQTL. PLoS Genetics, 2019, 15, e1008226.	3 . 5	4
11	Genome-wide association reveals contribution of MRAS to painful temporomandibular disorder in males. Pain, 2019, 160, 579-591.	4.2	37
12	Discovery of Novel Mechanisms for Idiopathic Pain Disorders Through Genome Wide Approaches. FASEB Journal, 2019, 33, 206.1.	0.5	0
13	Genomics of Cardiovascular Measures of Autonomic Tone. Journal of Cardiovascular Pharmacology, 2018, 71, 180-191.	1.9	6
14	Human carbonic anhydrase-8 AAV8 gene therapy inhibits nerve growth factor signaling producing prolonged analgesia and anti-hyperalgesia in mice. Gene Therapy, 2018, 25, 297-311.	4.5	6
15	Car8 dorsal root ganglion expression and genetic regulation of analgesic responses are associated with a cis-eQTL in mice. Mammalian Genome, 2017, 28, 407-415.	2.2	7
16	Impact of human CA8 on thermal antinociception in relation to morphine equivalence in mice. NeuroReport, 2017, 28, 1215-1220.	1.2	6
17	Evidence that dry eye represents a chronic overlapping pain condition. Molecular Pain, 2017, 13, 174480691772930.	2.1	34
18	Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nature Communications, 2017, 8, 80.	12.8	147

#	Article	lF	CITATIONS
19	Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes. Cell Reports, 2017, 19, 1940-1952.	6.4	83
20	Epiregulin and EGFR interactions are involved in pain processing. Journal of Clinical Investigation, 2017, 127, 3353-3366.	8.2	85
21	Modification of COMT-dependent pain sensitivity by psychological stress and sex. Pain, 2016, 157, 858-867.	4.2	49
22	Overlapping Chronic Pain Conditions: Implications for Diagnosis and Classification. Journal of Pain, 2016, 17, T93-T107.	1.4	329
23	Identification of clusters of individuals relevant to temporomandibular disorders and other chronic pain conditions. Pain, 2016, 157, 1266-1278.	4.2	104
24	COMT gene locus. Pain, 2015, 156, 2072-2083.	4.2	28
25	Carbonic Anhydrase-8 Regulates Inflammatory Pain by Inhibiting the ITPR1-Cytosolic Free Calcium Pathway. PLoS ONE, 2015, 10, e0118273.	2.5	30
26	Genome-wide association meta-analyses to identify common genetic variants associated with hallux valgus in Caucasian and African Americans. Journal of Medical Genetics, 2015, 52, 762-769.	3.2	18
27	MicroRNA expression profiles differentiate chronic pain condition subtypes. Translational Research, 2015, 166, 706-720.e11.	5.0	32
28	The nicotinic \hat{l} ±6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Science Translational Medicine, 2015, 7, 287ra72.	12.4	59
29	Epistasis between polymorphisms in COMT, ESR1, and GCH1 influences COMT enzyme activity and pain. Pain, 2014, 155, 2390-2399.	4.2	59
30	Facial pain with localized and widespread manifestations: Separate pathways of vulnerability. Pain, 2013, 154, 2335-2343.	4.2	31
31	Pain modality- and sex-specific effects of COMT genetic functional variants. Pain, 2013, 154, 1368-1376.	4.2	81
32	Clinical Orofacial Characteristics Associated With Risk of First-Onset TMD: The OPPERA Prospective Cohort Study. Journal of Pain, 2013, 14, T33-T50.	1.4	142
33	Study Protocol, Sample Characteristics, and Loss to Follow-Up: The OPPERA Prospective Cohort Study. Journal of Pain, 2013, 14, T2-T19.	1.4	59
34	Genetic Variants Associated With Development of TMD and Its Intermediate Phenotypes: The Genetic Architecture of TMD in the OPPERA Prospective Cohort Study. Journal of Pain, 2013, 14, T91-T101.e3.	1.4	76
35	Preclinical episodes of orofacial pain symptoms and their association with health care behaviors in the OPPERA prospective cohort study. Pain, 2013, 154, 750-760.	4.2	37
36	Summary of Findings From the OPPERA Prospective Cohort Study of Incidence of First-Onset Temporomandibular Disorder: Implications and Future Directions. Journal of Pain, 2013, 14, T116-T124.	1.4	189

#	Article	IF	Citations
37	The phenotypic and genetic signatures of common musculoskeletal pain conditions. Nature Reviews Rheumatology, 2013, 9, 340-350.	8.0	215
38	A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nature Genetics, 2013, 45, 690-696.	21.4	232
39	Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception. PLoS Genetics, 2012, 8, e1003071.	3.5	23
40	Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nature Medicine, 2012, 18, 595-599.	30.7	335
41	Large candidate gene association study reveals genetic risk factors and therapeutic targets for fibromyalgia. Arthritis and Rheumatism, 2012, 64, 584-593.	6.7	78
42	Potential Genetic Risk Factors for Chronic TMD: Genetic Associations from the OPPERA Case Control Study. Journal of Pain, 2011, 12, T92-T101.	1.4	157
43	Cytokine biomarkers and chronic pain: Association of genes, transcription, and circulating proteins with temporomandibular disorders and widespread palpation tenderness. Pain, 2011, 152, 2802-2812.	4.2	108
44	Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction. Nature Neuroscience, 2011, 14, 1569-1573.	14.8	110
45	Development of Temporomandibular Disorders Is Associated With Greater Bodily Pain Experience. Clinical Journal of Pain, 2010, 26, 116-120.	1.9	89
46	Effect of catechol-O-methyltransferase polymorphism on response to propranolol therapy in chronic musculoskeletal pain: a randomized, double-blind, placebo-controlled, crossover pilot study. Pharmacogenetics and Genomics, 2010, 20, 239-248.	1.5	120
47	Pain perception is altered by a nucleotide polymorphism in <i>SCN9A</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5148-5153.	7.1	279
48	Multiple chronic pain states are associated with a common amino acid–changing allele in KCNS1. Brain, 2010, 133, 2519-2527.	7.6	224
49	A Genome-wide Drosophila Screen for Heat Nociception Identifies α2δ3 as an Evolutionarily Conserved Pain Gene. Cell, 2010, 143, 628-638.	28.9	283
50	The $\hat{1}^23$ subunit of the Na+,K+-ATPase mediates variable nociceptive sensitivity in the formalin test. Pain, 2009, 144, 294-302.	4.2	43
51	Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes. Pharmacogenetics and Genomics, 2008, 18, 231-241.	1.5	51
52	Social Modulation of Pain as Evidence for Empathy in Mice. Science, 2006, 312, 1967-1970.	12.6	710
53	Influence of genotype, dose and sex on pruritogen-induced scratching behavior in the mouse. Pain, 2006, 124, 50-58.	4.2	96
54	Screening for pain phenotypes: Analysis of three congenic mouse strains on a battery of nine nociceptive assays. Pain, 2006, 126, 24-34.	4.2	70

#	ARTICLE	IF	CITATION
55	Influence of Nociception and Stress-induced Antinociception on Genetic Variation in Isoflurane Anesthetic Potency among Mouse Strains. Anesthesiology, 2005, 103, 751-758.	2.5	40
56	Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12938-12943.	7.1	151
57	Paclitaxel-induced neuropathic hypersensitivity in mice: Responses in 10 inbred mouse strains. Life Sciences, 2004, 74, 2593-2604.	4.3	123
58	The Heritability of Antinociception: Common Pharmacogenetic Mediation of Five Neurochemically Distinct Analgesics. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 547-559.	2.5	95
59	Tactile system and nociception. , 0, , 55-64.		0