Bao Yu Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3379604/publications.pdf Version: 2024-02-01

ΒΛΟ ΥΠ ΧΙΛ

#	Article	IF	CITATIONS
1	Noble Metal Construction for Electrochemical Nonenzymatic Glucose Detection. Advanced Materials Technologies, 2023, 8, .	5.8	18
2	Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production. Chinese Chemical Letters, 2022, 33, 1831-1840.	9.0	67
3	Emerging Electrocatalysts for Water Oxidation under Nearâ€Neutral CO ₂ Reduction Conditions. Advanced Materials, 2022, 34, e2105852.	21.0	34
4	Pt NPs-loaded siloxene nanosheets for hydrogen co-evolutions from Zn-H2O fuel cells-powered water-splitting. Applied Catalysis B: Environmental, 2022, 304, 121008.	20.2	27
5	Stabilizing Cu ²⁺ lons by Solid Solutions to Promote CO ₂ Electroreduction to Methane. Journal of the American Chemical Society, 2022, 144, 2079-2084.	13.7	188
6	Corrosion Chemistry of Electrocatalysts. Advanced Materials, 2022, 34, e2200840.	21.0	43
7	Carbonâ€Confined Indium Oxides for Efficient Carbon Dioxide Reduction in a Solid‣tate Electrolyte Flow Cell. Angewandte Chemie - International Edition, 2022, 61, .	13.8	72
8	Customizing the microenvironment of CO ₂ electrocatalysis via threeâ€phase interface engineering. SmartMat, 2022, 3, 111-129.	10.7	27
9	Optimizing Copper Oxidation State to Promote Ethylene Generation in Efficient Carbon Dioxide Conversion. ACS Sustainable Chemistry and Engineering, 2022, 10, 4677-4682.	6.7	12
10	Electrocatalytic CO ₂ Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry - A European Journal, 2022, 28, .	3.3	25
11	Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2022, 308, 121229.	20.2	69
12	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	102
13	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie, 2022, 134, .	2.0	22
14	A Substrateâ€Induced Fabrication of Active Freeâ€Standing Nanocarbon Film as Air Cathode in Rechargeable Zinc–Air Batteries. Small, 2022, 18, 2106606.	10.0	15
15	Highâ€Polarity Fluoroalkyl Ether Electrolyte Enables Solvationâ€Free Li ⁺ Transfer for Highâ€Rate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104699.	11.2	54
16	Preface to special issue on electrocatalysis for sustainable energy. Chinese Journal of Catalysis, 2022, 43, 1379.	14.0	3
17	Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chinese Journal of Catalysis, 2022, 43, 1459-1472.	14.0	95
18	Synthesis of Ni/NiO@MoO _{3â^'} <i>_x</i> Composite Nanoarrays for High Current Density Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	19.5	45

#	Article	IF	CITATIONS
19	Constructing nickel–iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202812119.	7.1	21
20	Frontispiece: Electrocatalytic CO ₂ Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry - A European Journal, 2022, 28, .	3.3	0
21	Recent Progress on NiFeâ€Based Electrocatalysts for Alkaline Oxygen Evolution. Advanced Sustainable Systems, 2021, 5, .	5.3	50
22	Destabilizing Alkaline Water with 3dâ€Metal (Oxy)(Hydr)Oxides for Improved Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 553-564.	3.3	17
23	Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries. Journal of Energy Chemistry, 2021, 55, 183-189.	12.9	125
24	Atom migration-trapping towardÂsingle-atom catalysts for energy electrocatalysis. Materials Today Energy, 2021, 19, 100586.	4.7	15
25	A Dendriteâ€Free Lithium/Carbon Nanotube Hybrid for Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2006702.	21.0	77
26	Hybrid water electrolysis: Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond. Materials Reports Energy, 2021, 1, 100004.	3.2	27
27	Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable <scp>zincâ€air</scp> batteries. EcoMat, 2021, 3, e12067.	11.9	48
28	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	14.9	86
29	Reconstructed Water Oxidation Electrocatalysts: The Impact of Surface Dynamics on Intrinsic Activities. Advanced Functional Materials, 2021, 31, 2008190.	14.9	161
30	Design and Synthesis of Conductive Metalâ€Organic Frameworks and Their Composites for Supercapacitors. ChemElectroChem, 2021, 8, 1021-1034.	3.4	37
31	Flexible and hollow polypyrrole foam with high loading of metal–organic framework nanowires for wearable supercapacitors. Journal of Materials Chemistry A, 2021, 9, 21799-21806.	10.3	30
32	Controllable synthesis of multidimensional carboxylic acid-based NiFe MOFs as efficient electrocatalysts for oxygen evolution. Materials Chemistry Frontiers, 2021, 5, 7191-7198.	5.9	30
33	Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells. Accounts of Chemical Research, 2021, 54, 311-322.	15.6	237
34	Engineering 2D Photocatalysts toward Carbon Dioxide Reduction. Advanced Energy Materials, 2021, 11, 2003159.	19.5	130
35	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 17832-17852.	13.8	265
36	Selectively Converting Carbon Dioxide to Syngas over Intermetallic AuCu Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 2609-2615.	6.7	22

#	Article	IF	CITATIONS
37	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie, 2021, 133, 17976-17996.	2.0	60
38	Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Research, 2021, 14, 4528-4533.	10.4	42
39	Raw biomass electroreforming coupled to green hydrogen generation. Nature Communications, 2021, 12, 2008.	12.8	104
40	Recent Advances on Electrospun Nanomaterials for Zinc–Air Batteries. Small Science, 2021, 1, 2100010.	9.9	88
41	Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries. Nano-Micro Letters, 2021, 13, 137.	27.0	84
42	Ultrafast and reversible anion storage of spinel nanoarchitecture for high-performance alkaline zinc full cells. Applied Physics Reviews, 2021, 8, .	11.3	10
43	Hierarchical <scp> ReS ₂ </scp> / <scp>nitrogenâ€doped</scp> graphene hybrid nanoarchitectures for efficient oxygen reduction. International Journal of Energy Research, 2021, 45, 19586-19596.	4.5	2
44	A Zeolitic-Imidazole Framework-Derived Trifunctional Electrocatalyst for Hydrazine Fuel Cells. ACS Nano, 2021, 15, 10286-10295.	14.6	33
45	Universal layer-by-layer assembly of integrated electrode for high-rate lithium-ion batteries by carbon nanotube socks. Carbon, 2021, 178, 573-580.	10.3	12
46	Efficient Electroconversion of Carbon Dioxide to Formate by a Reconstructed Aminoâ€Functionalized Indium–Organic Framework Electrocatalyst. Angewandte Chemie - International Edition, 2021, 60, 19107-19112.	13.8	89
47	Efficient Electroconversion of Carbon Dioxide to Formate by a Reconstructed Aminoâ€Functionalized Indium–Organic Framework Electrocatalyst. Angewandte Chemie, 2021, 133, 19255-19260.	2.0	8
48	Electrospinning Synthesis of Selfâ€Standing Cobalt/Nanocarbon Hybrid Membrane for Longâ€Life Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2021, 31, 2105021.	14.9	66
49	Hierarchical Oriented Metal–Organic Frameworks Assemblies for Waterâ€Evaporation Induced Electricity Generation. Advanced Functional Materials, 2021, 31, 2104732.	14.9	25
50	Boosting Oxygen Reduction via Integrated Construction and Synergistic Catalysis of Porous Platinum Alloy and Defective Graphitic Carbon. Angewandte Chemie - International Edition, 2021, 60, 25530-25537.	13.8	74
51	In Situ Phase Separation into Coupled Interfaces for Promoting CO ₂ Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie, 2021, 133, 23122-23129.	2.0	11
52	Boosting Oxygen Reduction via Integrated Construction and Synergistic Catalysis of Porous Platinum Alloy and Defective Graphitic Carbon. Angewandte Chemie, 2021, 133, 25734-25741.	2.0	5
53	In Situ Phase Separation into Coupled Interfaces for Promoting CO ₂ Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie - International Edition, 2021, 60, 22940-22947.	13.8	67
54	Direct integration of ultralow-platinum alloy into nanocarbon architectures for efficient oxygen reduction in fuel cells. Science Bulletin, 2021, 66, 2207-2216.	9.0	49

#	Article	IF	CITATIONS
55	Exfoliated Ultrathin ZnIn ₂ S ₄ Nanosheets with Abundant Zinc Vacancies for Enhanced CO ₂ Electroreduction to Formate. ChemSusChem, 2021, 14, 852-859.	6.8	45
56	Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energy and Environmental Science, 2021, 14, 365-373.	30.8	159
57	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	10.3	37
58	Molecular Cleavage of Metalâ€Organic Frameworks and Application to Energy Storage and Conversion. Advanced Materials, 2021, 33, e2104341.	21.0	73
59	<i>In situ</i> ion-exchange preparation and topological transformation of trimetal–organic frameworks for efficient electrocatalytic water oxidation. Energy and Environmental Science, 2021, 14, 6546-6553.	30.8	72
60	Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 25773-25795.	10.3	71
61	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 4662-4678.	2.0	114
62	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 4634-4650.	13.8	457
63	2D Nitrogenâ€Doped Carbon Nanotubes/Graphene Hybrid as Bifunctional Oxygen Electrocatalyst for Longâ€Life Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1906081.	14.9	190
64	Integrated Conductive Hybrid Architecture of Metal–Organic Framework Nanowire Array on Polypyrrole Membrane for All‧olid‧tate Flexible Supercapacitors. Advanced Energy Materials, 2020, 10, 1901892.	19.5	154
65	Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 2472-2480.	10.3	82
66	Grain refinement of self-supported copper electrode by multiple-redox treatment for enhanced carbon dioxide electroreduction towards carbon monoxide generation. Journal of Catalysis, 2020, 381, 608-614.	6.2	11
67	Bismuth Oxides with Enhanced Bismuth–Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catalysis, 2020, 10, 743-750.	11.2	234
68	Metal-organic framework membranes: From synthesis to electrocatalytic applications. Chinese Chemical Letters, 2020, 31, 2189-2201.	9.0	61
69	Spatial Confinement in Copper-Porphyrin Frameworks Enhances Carbon Dioxide Reduction to Hydrocarbons. Cell Reports Physical Science, 2020, 1, 100182.	5.6	27
70	Probe into metal-organic framework membranes fabricated via versatile polydopamine-assisted approach onto metal surfaces as anticorrosion coatings. Corrosion Science, 2020, 177, 108949.	6.6	29
71	Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nature Communications, 2020, 11, 5075.	12.8	226
72	Recent Progress on Two-dimensional Electrocatalysis. Chemical Research in Chinese Universities, 2020. 36. 611-621.	2.6	140

#	Article	IF	CITATIONS
73	Hybrid Architecture of a Porous Polypyrrole Scaffold Loaded with Metal–Organic Frameworks for Flexible Solid-State Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11920-11928.	5.1	31
74	Resurrecting Catalysts by Flash Annealing. Joule, 2020, 4, 2249-2251.	24.0	2
75	Online electrochemical behavior analysis on the negative plate of lead-acid batteries during the high-rate partial-state-of-charge cycle. Electrochimica Acta, 2020, 354, 136776.	5.2	9
76	Metal–organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 19254-19261.	10.3	111
77	Single-atom implanted two-dimensional MOFs as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4661-4668.	6.0	26
78	An electrolyte-phobic carbon nanotube current collector for high-voltage foldable lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 19444-19453.	10.3	14
79	A Zeoliticâ€Imidazole Frameworksâ€Derived Interconnected Macroporous Carbon Matrix for Efficient Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. Advanced Materials, 2020, 32, e2002170.	21.0	240
80	Metal–organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. Journal of Materials Chemistry A, 2020, 8, 12418-12423.	10.3	38
81	Transport and Durability of Energy Storage Materials Operating at High Temperatures. ACS Nano, 2020, 14, 7696-7703.	14.6	27
82	Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting. Chemical Engineering Journal, 2020, 398, 125669.	12.7	38
83	Highly Selective Carbon Dioxide Electroreduction on Structure-Evolved Copper Perovskite Oxide toward Methane Production. ACS Catalysis, 2020, 10, 4640-4646.	11.2	112
84	Metal–Organic Frameworkâ€Đerived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO ₂ Electroreduction to Formate. Angewandte Chemie - International Edition, 2020, 59, 10807-10813.	13.8	251
85	Natural N/O-doped hard carbon for high performance K-ion hybrid capacitors. Electrochimica Acta, 2020, 354, 136701.	5.2	27
86	Bifunctional nickel ferrite-decorated carbon nanotube arrays as free-standing air electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 5070-5077.	10.3	43
87	Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule, 2020, 4, 45-68.	24.0	596
88	Metal–Organic Frameworkâ€Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO ₂ Electroreduction to Formate. Angewandte Chemie, 2020, 132, 10899-10905.	2.0	56
89	Integrated design for electrocatalytic carbon dioxide reduction. Catalysis Science and Technology, 2020, 10, 2711-2720.	4.1	92
90	Synthesis and Application of Platinum-based Hollow Nanoframes for Direct Alcohol Fuel Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	14

#	Article	IF	CITATIONS
91	Band alignment in Zn2SnO4/SnO2 heterostructure enabling efficient CO2 electrochemical reduction. Nano Energy, 2019, 64, 103954.	16.0	68
92	Surface evolution and reconstruction of oxygen-abundant FePi/NiFeP synergy in NiFe phosphides for efficient water oxidation. Journal of Materials Chemistry A, 2019, 7, 18925-18931.	10.3	37
93	Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper–organic frameworks. Chemical Science, 2019, 10, 7975-7981.	7.4	91
94	Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366, 850-856.	12.6	1,005
95	Redox Tuning in Crystalline and Electronic Structure of Bimetal–Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance. Advanced Materials, 2019, 31, e1905744.	21.0	158
96	Ti-based electrode materials for electrochemical sodium ion storage and removal. Journal of Materials Chemistry A, 2019, 7, 22163-22188.	10.3	59
97	Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorganic Chemistry Frontiers, 2019, 6, 2686-2695.	6.0	27
98	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie, 2019, 131, 11922-11926.	2.0	22
99	Tailoring of Metal Boride Morphology via Anion for Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1901503.	19.5	79
100	Ambient dinitrogen electrocatalytic reduction for ammonia synthesis. Journal of Materials Chemistry A, 2019, 7, 23416-23431.	10.3	54
101	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie - International Edition, 2019, 58, 11796-11800.	13.8	155
102	Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide. Applied Catalysis B: Environmental, 2019, 255, 117736.	20.2	56
103	Densely Populated Isolated Single CoN Site for Efficient Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1900149.	19.5	262
104	Engineering one-dimensional and hierarchical PtFe alloy assemblies towards durable methanol electrooxidation. Journal of Materials Chemistry A, 2019, 7, 13090-13095.	10.3	56
105	Engineering of molybdenum sulfide nanostructures towards efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 15009-15016.	7.1	21
106	Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Materials, 2019, 19, 212-241.	18.0	163
107	Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy, 2019, 60, 894-902.	16.0	250
108	Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, e1807001.	21.0	470

#	Article	IF	CITATIONS
109	N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting. Carbon, 2019, 144, 464-471.	10.3	119
110	Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting. Carbon, 2019, 145, 201-208.	10.3	70
111	Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chemical Science, 2019, 10, 2019-2024.	7.4	163
112	Recent Progress on Transition Metal Oxides as Bifunctional Catalysts for Lithiumâ€Air and Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 336-347.	4.7	173
113	An Earth-Abundant Tungsten–Nickel Alloy Electrocatalyst for Superior Hydrogen Evolution. ACS Applied Nano Materials, 2018, 1, 1228-1235.	5.0	57
114	Platinum-Silver Alloy Nanoballoon Nanoassemblies with Super Catalytic Activity for the Formate Electrooxidation. ACS Applied Energy Materials, 2018, 1, 1252-1258.	5.1	50
115	Anodic Hydrazine Oxidation Assists Energyâ€Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. Angewandte Chemie, 2018, 130, 7775-7779.	2.0	48
116	Synthesis of single crystalline two-dimensional transition-metal phosphides <i>via</i> a salt-templating method. Nanoscale, 2018, 10, 6844-6849.	5.6	61
117	Universal molecular-confined synthesis of interconnected porous metal oxides-N-C frameworks for electrocatalytic water splitting. Nano Energy, 2018, 48, 600-606.	16.0	61
118	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	11.2	645
119	A core/shell structured tubular graphene nanoflake-coated polypyrrole hybrid for all-solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3913-3918.	10.3	87
120	Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction. Nano Research, 2018, 11, 3537-3547.	10.4	78
121	Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. Journal of Materials Chemistry A, 2018, 6, 3211-3217.	10.3	376
122	Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. Chemical Communications, 2018, 54, 5943-5955.	4.1	142
123	Anodic Hydrazine Oxidation Assists Energy fficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. Angewandte Chemie - International Edition, 2018, 57, 7649-7653.	13.8	352
124	Innovative Strategies for Electrocatalytic Water Splitting. Accounts of Chemical Research, 2018, 51, 1571-1580.	15.6	1,262
125	Enhanced CO2 photocatalytic reduction through simultaneously accelerated H2 evolution and CO2 hydrogenation in a twin photoreactor. Journal of CO2 Utilization, 2018, 24, 500-508.	6.8	24
126	Quasiâ€Emulsion Confined Synthesis of Edgeâ€Rich Ultrathin MoS ₂ Nanosheets/Graphene Hybrid for Enhanced Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 556-560.	3.3	55

#	Article	IF	CITATIONS
127	Synthesis of amorphous boride nanosheets by the chemical reduction of Prussian blue analogs for efficient water electrolysis. Journal of Materials Chemistry A, 2018, 6, 23289-23294.	10.3	73
128	Chainmail catalyst of ultrathin P-doped carbon shell-encapsulated nickel phosphides on graphene towards robust and efficient hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 24107-24113.	10.3	44
129	Atmosphericâ€Pressure Synthesis of 2D Nitrogenâ€Rich Tungsten Nitride. Advanced Materials, 2018, 30, e1805655.	21.0	104
130	Engineering the Surface/Interface of Horizontally Oriented Carbon Nanotube Macrofilm for Foldable Lithiumâ€ion Battery Withstanding Variable Weather. Advanced Energy Materials, 2018, 8, 1802349.	19.5	52
131	Dicyandiamide and iron-tannin framework derived nitrogen-doped carbon nanosheets with encapsulated iron carbide nanoparticles as advanced pH-universal oxygen reduction catalysts. Journal of Colloid and Interface Science, 2018, 530, 196-201.	9.4	32
132	Lead Oxide Enveloped in N-Doped Graphene Oxide Composites for Enhanced High-Rate Partial-State-of-Charge Performance of Lead-Acid Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 11408-11413.	6.7	40
133	Metal/covalent–organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 15905-15926.	10.3	258
134	<i>In situ</i> formation of Ni ₃ Se ₄ nanorod arrays as versatile electrocatalysts for electrochemical oxidation reactions in hybrid water electrolysis. Journal of Materials Chemistry A, 2018, 6, 15653-15658.	10.3	84
135	Construction of Metal–Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 18021-18028.	8.0	176
136	Formation of a Tubular Assembly by Ultrathin Ti _{0.8} Co _{0.2} N Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Hydrogen–/Metal–Air Fuel Cells. ACS Catalysis, 2018, 8, 8970-8975.	11.2	147
137	An Efficient and Earthâ€Abundant Oxygenâ€Evolving Electrocatalyst Based on Amorphous Metal Borides. Advanced Energy Materials, 2018, 8, 1701475.	19.5	292
138	Free-standing vertically-aligned nitrogen-doped carbon nanotube arrays/graphene as air-breathing electrodes for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2017, 5, 2488-2495.	10.3	83
139	Hollow Nitrogen-Doped Carbon Spheres with Fe ₃ O ₄ Nanoparticles Encapsulated as a Highly Active Oxygen-Reduction Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 10610-10617.	8.0	128
140	Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 4778-4784.	6.7	78
141	Molybdenum Carbideâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 10947-10961.	3.3	267
142	Efficient H ₂ Evolution Coupled with Oxidative Refining of Alcohols via A Hierarchically Porous Nickel Bifunctional Electrocatalyst. ACS Catalysis, 2017, 7, 4564-4570.	11.2	295
143	Electrocatalysis of Furfural Oxidation Coupled with H ₂ Evolution via Nickelâ€Based Electrocatalysts in Water. ChemNanoMat, 2017, 3, 491-495.	2.8	78
144	Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. Journal of Energy Chemistry, 2017, 26, 1067-1076.	12.9	163

#	Article	IF	CITATIONS
145	Frontispiece: Molybdenum Carbideâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2017, 23, .	3.3	0
146	Ball-milling synthesis of Co ₂ P nanoparticles encapsulated in nitrogen doped hollow carbon rods as efficient electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 17563-17569.	10.3	57
147	Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water. Journal of the American Chemical Society, 2017, 139, 12283-12290.	13.7	207
148	Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2017, 2, 2035-2043.	17.4	174
149	Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Research, 2017, 10, 3324-3332.	10.4	79
150	TiO ₂ -Based Nanomaterials for Advanced Environmental and Energy-Related Applications. Journal of Nanomaterials, 2016, 2016, 1-3.	2.7	9
151	Chalcogenide and Phosphide Solid‣tate Electrocatalysts for Hydrogen Generation. ChemPlusChem, 2016, 81, 1045-1055.	2.8	74
152	Bifunctionality and Mechanism of Electrodeposited Nickel–Phosphorous Films for Efficient Overall Water Splitting. ChemCatChem, 2016, 8, 106-112.	3.7	147
153	General Formation of M–MoS ₃ (M = Co, Ni) Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Advanced Materials, 2016, 28, 92-97.	21.0	364
154	Competent overall water-splitting electrocatalysts derived from ZIF-67 grown on carbon cloth. RSC Advances, 2016, 6, 73336-73342.	3.6	55
155	A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. Journal of the American Chemical Society, 2016, 138, 13639-13646.	13.7	689
156	Sandwich-structured Au@polyallylamine@Pd nanostructures: tuning the electronic properties of the Pd shell for electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 12020-12024.	10.3	25
157	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie - International Edition, 2016, 55, 9913-9917.	13.8	435
158	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie, 2016, 128, 10067-10071.	2.0	94
159	Integrating Electrocatalytic 5-Hydroxymethylfurfural Oxidation and Hydrogen Production via Co–P-Derived Electrocatalysts. ACS Energy Letters, 2016, 1, 386-390.	17.4	272
160	A metal–organic framework-derived bifunctional oxygenÂelectrocatalyst. Nature Energy, 2016, 1, .	39.5	1,974
161	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.	10.3	1,037
162	Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333.	19.5	268

#	Article	IF	CITATIONS
163	Electrochemical oxidation to construct a nickel sulfide/oxide heterostructure with improvement of capacitance. Journal of Materials Chemistry A, 2016, 4, 11611-11615.	10.3	33
164	Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy and Environmental Science, 2016, 9, 1687-1695.	30.8	290
165	Morphology–activity correlation in hydrogen evolution catalyzed by cobalt sulfides. Inorganic Chemistry Frontiers, 2016, 3, 279-285.	6.0	33
166	Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon, 2016, 102, 58-65.	10.3	50
167	Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Research, 2016, 9, 808-819.	10.4	81
168	Hierarchically Porous Urchin-Like Ni ₂ P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2016, 6, 714-721.	11.2	737
169	Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS ₂ , and Ni ₃ S ₂ nanoparticles. Catalysis Science and Technology, 2016, 6, 1077-1084.	4.1	408
170	Rücktitelbild: Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting (Angew. Chem. 21/2015). Angewandte Chemie, 2015, 127, 6470-6470.	2.0	1
171	Construction of Efficient 3D Gas Evolution Electrocatalyst for Hydrogen Evolution: Porous FeP Nanowire Arrays on Graphene Sheets. Advanced Science, 2015, 2, 1500120.	11.2	163
172	Hierarchical βâ€Mo ₂ C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 15395-15399.	13.8	546
173	A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting. Chemistry - A European Journal, 2015, 21, 18062-18067.	3.3	228
174	Self-Assembly Synthesis of N-Doped Carbon Aerogels for Supercapacitor and Electrocatalytic Oxygen Reduction. ACS Applied Materials & Interfaces, 2015, 7, 12760-12766.	8.0	101
175	Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6, 6512.	12.8	1,194
176	Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy, 2015, 12, 824-832.	16.0	126
177	Oneâ€Pot Synthesis of Pt–Co Alloy Nanowire Assemblies with Tunable Composition and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 3797-3801.	13.8	407
178	Microwave vs. solvothermal synthesis of hollow cobalt sulfide nanoprisms for electrocatalytic hydrogen evolution and supercapacitors. Chemical Communications, 2015, 51, 4252-4255.	4.1	129
179	Platinum Multicubes Prepared by Ni ²⁺ â€Mediated Shape Evolution Exhibit High Electrocatalytic Activity for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 5666-5671.	13.8	84
180	Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction. Scientific Reports, 2015, 5, 11739.	3.3	22

#	Article	IF	CITATIONS
181	Electrodeposited Cobaltâ€Phosphorousâ€Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 6251-6254.	13.8	712
182	Chemoresponsive Colloidosomes via Ag ⁺ Soldering of Surface-Assembled Nanoparticle Monolayers. Langmuir, 2015, 31, 4589-4592.	3.5	14
183	Designed Formation of Co ₃ O ₄ /NiCo ₂ O ₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. Journal of the American Chemical Society, 2015. 137. 5590-5595.	13.7	1,059
184	Bimetal–Organic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction. ACS Catalysis, 2015, 5, 7068-7076.	11.2	442
185	High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 7636-7642.	6.7	579
186	Vertically oriented MoS ₂ and WS ₂ nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. Journal of Materials Chemistry A, 2015, 3, 131-135.	10.3	254
187	Facile Synthesis of 3 D Platinum Dendrites with a Clean Surface as Highly Stable Electrocatalysts. ChemCatChem, 2014, 6, 1538-1542.	3.7	8
188	Improving the Energy Storage Performance of Graphene through Insertion of Pristine CNTs and Ordered Mesoporous Carbon Coating. ChemElectroChem, 2014, 1, 772-778.	3.4	43
189	Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catalysis, 2014, 4, 1693-1705.	11.2	769
190	Oneâ€₽ot Synthesis of Platinum Nanocubes on Reduced Graphene Oxide with Enhanced Electrocatalytic Activity. Small, 2014, 10, 2336-2339.	10.0	47
191	Multifunctional Electroactive Heteroatomâ€Doped Carbon Aerogels. Small, 2014, 10, 4352-4361.	10.0	57
192	Compressed hydrogen gas-induced synthesis of Au–Pt core–shell nanoparticle chains towards high-performance catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 10676-10681.	10.3	37
193	Three-Dimensional Hierarchically Porous All-Carbon Foams for Supercapacitor. ACS Applied Materials & Interfaces, 2014, 6, 15302-15308.	8.0	159
194	Two dimensional TiO ₂ nanosheets: in vivo toxicity investigation. RSC Advances, 2014, 4, 42598-42603.	3.6	26
195	Recent progress on graphene-based hybrid electrocatalysts. Materials Horizons, 2014, 1, 379-399.	12.2	303
196	Strongly Coupled NiCo ₂ O ₄ â€rGO Hybrid Nanosheets as a Methanolâ€rolerant Electrocatalyst for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 2408-2412.	21.0	283
197	Novel tungsten carbide nanorods: An intrinsic peroxidase mimetic with high activity and stability in aqueous and organic solvents. Biosensors and Bioelectronics, 2014, 54, 521-527.	10.1	39
198	Highly Concave Platinum Nanoframes with Highâ€Index Facets and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2013, 52, 12337-12340.	13.8	193

#	Article	IF	CITATIONS
199	Ultrathin MoS ₂ Nanoplates with Rich Active Sites as Highly Efficient Catalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2013, 5, 12794-12798.	8.0	392
200	Graphene Oxideâ€Dispersed Pristine CNTs Support for MnO ₂ Nanorods as High Performance Supercapacitor Electrodes. ChemSusChem, 2013, 6, 474-480.	6.8	92
201	Water-Soluble Polymer Exfoliated Graphene: As Catalyst Support and Sensor. Journal of Physical Chemistry B, 2013, 117, 5606-5613.	2.6	43
202	Three dimensional N-doped graphene–CNT networks for supercapacitor. Chemical Communications, 2013, 49, 5016.	4.1	349
203	Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide. Chemical Communications, 2013, 49, 4884.	4.1	175
204	General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2013, 52, 8643-8647.	13.8	194
205	Ultrathin and Ultralong Single-Crystal Platinum Nanowire Assemblies with Highly Stable Electrocatalytic Activity. Journal of the American Chemical Society, 2013, 135, 9480-9485.	13.7	425
206	Rücktitelbild: General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithium-Ion Batteries (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8916-8916.	2.0	2
207	One-Pot Synthesis of Cubic PtCu ₃ Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. Journal of the American Chemical Society, 2012, 134, 13934-13937.	13.7	581
208	Hollow porous molecularly imprinted polymer nanosphere for fast and efficient recognition of bisphenol A. RSC Advances, 2012, 2, 9778.	3.6	28
209	Hierarchically structured Pt/CNT@TiO ₂ nanocatalysts with ultrahigh stability for low-temperature fuel cells. RSC Advances, 2012, 2, 792-796.	3.6	41
210	A new restriction effect of aging time on the shrinkage of ordered mesoporous carbon during carbonization. RSC Advances, 2012, 2, 5071.	3.6	11
211	Formation of Pt–TiO ₂ –rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation. Physical Chemistry Chemical Physics, 2012, 14, 473-476.	2.8	67
212	Self‧upported Interconnected Pt Nanoassemblies as Highly Stable Electrocatalysts for Lowâ€Temperature Fuel Cells. Angewandte Chemie - International Edition, 2012, 51, 7213-7216.	13.8	211
213	Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. Journal of Materials Chemistry, 2012, 22, 7851.	6.7	253
214	Sandwich-structured TiO2–Pt–graphene ternary hybrid electrocatalysts with high efficiency and stability. Journal of Materials Chemistry, 2012, 22, 16499.	6.7	112
215	Exfoliation and dispersion of graphene in ethanol-water mixtures. Frontiers of Materials Science, 2012, 6, 176-182.	2.2	59
216	Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor. Chemical Communications, 2011, 47, 12364.	4.1	134

#	Article	IF	CITATIONS
217	Microstructures evolution and phase transformation behaviors of Ni-rich TiNi shape memory alloys after equal channel angular extrusion. Journal of Alloys and Compounds, 2011, 509, 3006-3012.	5.5	25
218	Effects of equal channel angular extrusion and aging treatment on R phase transformation behaviors and Ti3Ni4 precipitates of Ni-rich TiNi alloys. Journal of Alloys and Compounds, 2011, 509, 6296-6301.	5.5	22
219	Influence of Preparation Conditions on Structural Stability of Ordered Mesoporous Carbons Synthesized by Evaporation-induced Triconstituent Co-assembly Method. Chinese Journal of Chemical Physics, 2011, 24, 365-372.	1.3	2
220	Durability Improvement of a Pt Catalyst with the Use of a Graphitic Carbon Support. Chemistry - A European Journal, 2010, 16, 8268-8274.	3.3	26
221	A General Strategy for the Preparation of Hollow Carbon Nanocages by NH ₄ Clâ€Assisted Lowâ€Temperature Heat Treatment. Chemistry - A European Journal, 2010, 16, 13603-13608.	3.3	10
222	Preparation of hollow carbon nanocages by iodine-assisted heat treatment. Journal of Power Sources, 2010, 195, 1065-1070.	7.8	22
223	Preparation of dispersible double-walled carbon nanotubes and application as catalyst support in fuel cells. Journal of Power Sources, 2010, 195, 2143-2148.	7.8	16
224	Synthesis and Application of Pt Nanocrystals with Controlled Crystallographic Planes. Journal of Physical Chemistry C, 2009, 113, 18115-18120.	3.1	48
225	Synthesis and Application of Graphitic Carbon with High Surface Area. Advanced Functional Materials, 2008, 18, 1790-1798.	14.9	59
226	Carbon onfined Indium Oxides for Efficient Carbon Dioxide Reduction in a Solid‧tate Electrolyte Flow Cell. Angewandte Chemie, 0, , .	2.0	7