Barry Ninham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337935/publications.pdf Version: 2024-02-01

	5782	6024
32,129	84	165
citations	h-index	g-index
421	421	18748
docs citations	times ranked	citing authors
	citations 421	32,129 84 citations h-index 421 421

Βλρον Νινηλω

#	Article	IF	CITATIONS
1	Physicochemical characterization of green sodium oleate-based formulations. Part 2. Effect of anions. Journal of Colloid and Interface Science, 2022, 617, 399-408.	5.0	8
2	Nafion Swelling in Salt Solutions in a Finite Sized Cell: Curious Phenomena Dependent on Sample Preparation Protocol. Polymers, 2022, 14, 1511.	2.0	7
3	Pulmonary surfactant and COVID-19: A new synthesis. QRB Discovery, 2022, 3, .	0.6	3
4	Physicochemical characterization of green sodium oleate-based formulations. Part 1. Structure and rheology. Journal of Colloid and Interface Science, 2021, 590, 238-248.	5.0	10
5	Morphologies and Structure of Brain Lipid Membrane Dispersions. Frontiers in Cell and Developmental Biology, 2021, 9, 675140.	1.8	18
6	Structuring effect of some salts on glycerol carbonate: A near-infrared spectroscopy, small- and wide-angle X-ray scattering study. Journal of Molecular Liquids, 2021, 337, 116413.	2.3	2
7	After DLVO: Hans Lyklema and the keepers of the faith. Advances in Colloid and Interface Science, 2020, 276, 102082.	7.0	13
8	Pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatology, The, 2020, 2, e458-e459.	2.2	0
9	Formation of Water-Free Cavity in the Process of Nafion Swelling in a Cell of Limited Volume; Effect of Polymer Fibers Unwinding. Polymers, 2020, 12, 2888.	2.0	11
10	Unexpected Properties of Degassed Solutions. Journal of Physical Chemistry B, 2020, 124, 7872-7878.	1.2	24
11	Ascorbylâ€6â€Oâ€oleate: A Bioconjugate Antioxidant Lipid. ChemistrySelect, 2020, 5, 1938-1944.	0.7	4
12	The Effect of Temperature and Magnetic Field on the Precipitation of Insoluble Salts of Alkaline Earth Metals. Journal of Solution Chemistry, 2020, 49, 289-305.	0.6	6
13	Shaking-Induced Aggregation and Flotation in Immunoglobulin Dispersions: Differences between Water and Water–Ethanol Mixtures. ACS Omega, 2020, 5, 14689-14701.	1.6	54
14	Ion flotation removal of a range of contaminant ions from drinking water. Journal of Environmental Chemical Engineering, 2019, 7, 103263.	3.3	26
15	Virus and bacteria inactivation by CO2 bubbles in solution. Npj Clean Water, 2019, 2, .	3.1	20
16	Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces. Quarterly Reviews of Biophysics, 2019, 52, e13.	2.4	28
17	Water sterilisation using different hot gases in a bubble column reactor. Journal of Environmental Chemical Engineering, 2018, 6, 2651-2659.	3.3	20
18	The curious effect of potassium fluoride on glycerol carbonate. How salts can influence the structuredness of organic solvents. Journal of Molecular Liquids, 2018, 255, 397-405.	2.3	13

#	Article	IF	CITATIONS
19	Near-surface structure of Nafion in deuterated water. Journal of Chemical Physics, 2018, 149, 164901.	1.2	32
20	Specific ion effects in non-aqueous solvents: The case of glycerol carbonate. Journal of Molecular Liquids, 2018, 266, 711-717.	2.3	14
21	Dynamics of Nafion membrane swelling in H2O/D2O mixtures as studied using FTIR technique. Journal of Chemical Physics, 2018, 148, 124901.	1.2	18
22	Two sides of the coin. Part 1. Lipid and surfactant self-assembly revisited. Colloids and Surfaces B: Biointerfaces, 2017, 152, 326-338.	2.5	39
23	Specific ion effects in polysaccharide dispersions. Carbohydrate Polymers, 2017, 173, 344-352.	5.1	17
24	Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE). Colloids and Surfaces B: Biointerfaces, 2017, 151, 1-10.	2.5	19
25	Two sides of the coin. Part 2. Colloid and surface science meets real biointerfaces. Colloids and Surfaces B: Biointerfaces, 2017, 159, 394-404.	2.5	27
26	Surface forces: Changing concepts and complexity with dissolved gas, bubbles, salt and heat. Current Opinion in Colloid and Interface Science, 2017, 27, 25-32.	3.4	59
27	Editorial: Electrolytes and specific ion effects. New and old horizons. Current Opinion in Colloid and Interface Science, 2016, 23, A1-A5.	3.4	17
28	Phase transitions in hydrophobe/phospholipid mixtures: hints at connections between pheromones and anaesthetic activity. Physical Chemistry Chemical Physics, 2016, 18, 15375-15383.	1.3	4
29	Specific Anion Effects on the Kinetics of Iodination of Acetone. ChemPhysChem, 2016, 17, 2567-2571.	1.0	11
30	Ion-Specific and Thermal Effects in the Stabilization of the Gas Nanobubble Phase in Bulk Aqueous Electrolyte Solutions. Langmuir, 2016, 32, 11245-11255.	1.6	78
31	Novel Applications of Non Hofmeister Ion Specificity in Bubble Interactions. Current Opinion in Colloid and Interface Science, 2016, 23, 50-57.	3.4	0
32	A correspondence principle. Physica A: Statistical Mechanics and Its Applications, 2016, 443, 495-517.	1.2	1
33	Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase. Scientific Reports, 2015, 5, 14282.	1.6	16
34	Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator. Journal of Physical Chemistry B, 2015, 119, 8072-8079.	1.2	14
35	Hydronium and hydroxide at the air–water interface with a continuum solvent model. Chemical Physics Letters, 2015, 635, 1-12.	1.2	44
36	Specific anion effects in Artemia salina. Chemosphere, 2015, 135, 335-340.	4.2	11

#	Article	IF	CITATIONS
37	The Solvation of Anions in Propylene Carbonate. Journal of Solution Chemistry, 2015, 44, 1224-1239.	0.6	30
38	Casimir forces in a plasma: possible connections to Yukawa potentials. European Physical Journal D, 2014, 68, 1.	0.6	10
39	Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chemical Society Reviews, 2014, 43, 7358-7377.	18.7	455
40	A continuum solvent model of ion–ion interactions in water. Physical Chemistry Chemical Physics, 2014, 16, 22014-22027.	1.3	30
41	lon Interactions with the Air–Water Interface Using a Continuum Solvent Model. Journal of Physical Chemistry B, 2014, 118, 8700-8710.	1.2	40
42	A Continuum Solvent Model of the Partial Molar Volumes and Entropies of Ionic Solvation. Journal of Physical Chemistry B, 2014, 118, 3122-3132.	1.2	22
43	Collins's rule, Hofmeister effects and ionic dispersion interactions. Chemical Physics Letters, 2014, 608, 55-59.	1.2	83
44	A Continuum Solvent Model of the Multipolar Dispersion Solvation Energy. Journal of Physical Chemistry B, 2013, 117, 9412-9420.	1.2	66
45	Interplay of ion specificity, pH and buffers: insights from electrophoretic mobility and pH measurements of lysozyme solutions. RSC Advances, 2013, 3, 5882.	1.7	49
46	Resonance interaction induced by metal surfaces catalyzes atom-pair breakage. Physical Review A, 2013, 87, .	1.0	2
47	A Continuum Model of Solvation Energies Including Electrostatic, Dispersion, and Cavity Contributions. Journal of Physical Chemistry B, 2013, 117, 9421-9429.	1.2	76
48	Specific Cation Effects on Hemoglobin Aggregation below and at Physiological Salt Concentration. Langmuir, 2013, 29, 15350-15358.	1.6	62
49	Ultrathin metallic coatings can induce quantum levitation between nanosurfaces. Applied Physics Letters, 2012, 100, 253104.	1.5	11
50	Enlarged molecules from excited atoms in nanochannels. Physical Review A, 2012, 86, .	1.0	4
51	Retardation turns the van der Waals attraction into a Casimir repulsion as close as 3 nm. Physical Review A, 2012, 85, .	1.0	31
52	Hofmeister Phenomena in Nonaqueous Media: The Solubility of Electrolytes in Ethylene Carbonate. Journal of Physical Chemistry B, 2012, 116, 14398-14405.	1.2	54
53	Hofmeister series reversal for lysozyme by change in pH and salt concentration: insights from electrophoretic mobility measurements. Physical Chemistry Chemical Physics, 2012, 14, 4343.	1.3	70
54	Nonelectrostatic Ionic Forces between Dissimilar Surfaces: A Mechanism for Colloid Separation. Journal of Physical Chemistry C, 2012, 116, 7782-7792.	1.5	23

#	Article	IF	CITATIONS
55	Hofmeister Challenges: Ion Binding and Charge of the BSA Protein as Explicit Examples. Langmuir, 2012, 28, 16355-16363.	1.6	81
56	Casimir-Lifshitz interaction between ZnO and SiO2nanorods in bromobenzene turns repulsive at intermediate separations due to retardation effects. Physical Review A, 2012, 85, .	1.0	3
57	Hofmeister Phenomena: An Update on Ion Specificity in Biology. Chemical Reviews, 2012, 112, 2286-2322.	23.0	812
58	Specific Ion Effects on Adsorption at the Solid/Electrolyte Interface: A Probe into the Concentration Limit. Langmuir, 2011, 27, 8710-8717.	1.6	38
59	Possible Origin of the Inverse and Direct Hofmeister Series for Lysozyme at Low and High Salt Concentrations. Langmuir, 2011, 27, 9504-9511.	1.6	119
60	Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Physical Chemistry Chemical Physics, 2011, 13, 12352.	1.3	388
61	Approaches to hydration, old and new: Insights through Hofmeister effects. Current Opinion in Colloid and Interface Science, 2011, 16, 612-617.	3.4	68
62	Measurements and Theoretical Interpretation of Points of Zero Charge/Potential of BSA Protein. Langmuir, 2011, 27, 11597-11604.	1.6	206
63	Longâ€living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions. Journal of Biophotonics, 2011, 4, 150-164.	1.1	51
64	Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 383, 2-9.	2.3	66
65	Specific ion effects. , 2010, , 146-231.		3
66	lon specificity of the zeta potential of α-alumina, and of the adsorption of p-hydroxybenzoate at the α-alumina–water interface. Journal of Colloid and Interface Science, 2010, 344, 482-491.	5.0	70
67	Electrostatic forces in electrolytes in outline. , 2010, , 35-64.		1
68	Asymmetric Partitioning of Anions in Lysozyme Dispersions. Journal of the American Chemical Society, 2010, 132, 6571-6577.	6.6	39
69	Charge Reversal of Surfaces in Divalent Electrolytes: The Role of Ionic Dispersion Interactions. Langmuir, 2010, 26, 6430-6436.	1.6	83
70	Importance of Accurate Dynamic Polarizabilities for the Ionic Dispersion Interactions of Alkali Halides. Langmuir, 2010, 26, 1816-1823.	1.6	95
71	Why Direct or Reversed Hofmeister Series? Interplay of Hydration, Non-electrostatic Potentials, and Ion Size. Langmuir, 2010, 26, 3323-3328.	1.6	111
72	Role of Dissolved Gas in Optical Breakdown of Water: Differences between Effects Due to Helium and Other Gases. Journal of Physical Chemistry B, 2010, 114, 7743-7752.	1.2	33

#	Article	IF	CITATIONS
73	Ion Specific Surface Charge Density of SBA-15 Mesoporous Silica. Langmuir, 2010, 26, 2484-2490.	1.6	84
74	Gels from a semifluorinated n-alkane in fluorinated solvents as a probe for intermolecular interactions. Journal of Colloid and Interface Science, 2009, 339, 259-265.	5.0	4
75	Nonelectrostatic interactions between ions with anisotropic ab initio dynamic polarisabilities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 57-63.	2.3	38
76	Ab Initio Molar Volumes and Gaussian Radii. Journal of Physical Chemistry A, 2009, 113, 1141-1150.	1.1	113
77	Anion-Specific Partitioning in Two-Phase Finite Volume Systems: Possible Implications for Mechanisms of Ion Pumps. Journal of Physical Chemistry B, 2009, 113, 8124-8127.	1.2	14
78	Effect of Headgroup Chirality in Nanoassemblies. Part 1. Self-Assembly of <scp>d</scp> -lsoascorbic Acid Derivatives in Water. Journal of Physical Chemistry B, 2009, 113, 1404-1412.	1.2	19
79	Effect of Headgroup Chirality in Nanoassemblies. 2. Thermal Behavior of Vitamin C-Based Surfactants. Journal of Physical Chemistry B, 2009, 113, 8324-8331.	1.2	13
80	Hofmeister Effects in Enzymatic Activity, Colloid Stability and pH Measurements: Ion-Dependent Specificity of~Intermolecular Forces. , 2009, , 159-194.		2
81	Threading, Growth, and Aggregation of Pseudopolyrotaxanes. Journal of Physical Chemistry B, 2008, 112, 1071-1081.	1.2	50
82	Specific Anion Effects on Enzymatic Activity in Nonaqueous Media. Journal of Physical Chemistry B, 2008, 112, 12066-12072.	1.2	63
83	Interconnected Networks: Structural and Dynamic Characterization of Aqueous Dispersions of Dioctanoylphosphatidylcholine. Journal of Physical Chemistry B, 2008, 112, 12625-12634.	1.2	14
84	The influence of ion binding and ion specific potentials on the double layer pressure between charged bilayers at low salt concentrations. Journal of Chemical Physics, 2008, 128, 135104.	1.2	23
85	Mineralization of CaCO3 in the Presence of Egg White Lysozyme. Langmuir, 2007, 23, 12269-12274.	1.6	47
86	Insights into Hofmeister Mechanisms:Â Anion and Degassing Effects on the Cloud Point of Dioctanoylphosphatidylcholine/Water Systems. Journal of Physical Chemistry B, 2007, 111, 589-597.	1.2	40
87	Specific Anion Effects on the Optical Rotation of α-Amino Acids. Journal of Physical Chemistry B, 2007, 111, 10510-10519.	1.2	32
88	Specific Alkali Cation Effects in the Transition from Micelles to Vesicles through Salt Addition. Langmuir, 2007, 23, 2376-2381.	1.6	113
89	Hofmeister Effects in Enzymatic Activity:Â Weak and Strong Electrolyte Influences on the Activity ofCandida rugosaLipase. Journal of Physical Chemistry B, 2007, 111, 1149-1156.	1.2	117
90	Organogels from a Vitamin C-Based Surfactant. Journal of Physical Chemistry B, 2007, 111, 11714-11721.	1.2	30

#	Article	IF	CITATIONS
91	Effect of the ion-protein dispersion interactions on the protein-surface and protein-protein interactions. Journal of the Brazilian Chemical Society, 2007, 18, 223-230.	0.6	16
92	Similarity of Salt Influences on the pH of Buffers, Polyelectrolytes, and Proteins. Journal of Physical Chemistry B, 2006, 110, 8870-8876.	1.2	32
93	Effect of Salt Identity on the Phase Diagram for a Globular Protein in Aqueous Electrolyte Solution. Journal of Physical Chemistry B, 2006, 110, 24757-24760.	1.2	44
94	Why pH Titration in Protein Solutions Follows a Hofmeister Series. Journal of Physical Chemistry B, 2006, 110, 7563-7566.	1.2	30
95	Specific Anion Effects on Class Electrode pH Measurements of Buffer Solutions:Â Bulk and Surface Phenomena. Journal of Physical Chemistry B, 2006, 110, 2949-2956.	1.2	113
96	Ion Specific Surface Forces between Membrane Surfaces. Journal of Physical Chemistry B, 2006, 110, 9645-9649.	1.2	21
97	Nanotubes from a Vitamin C-Based Bolaamphiphile. Journal of the American Chemical Society, 2006, 128, 7209-7214.	6.6	65
98	Hofmeister effects in supramolecular and biological systems. Biophysical Chemistry, 2006, 124, 208-213.	1.5	57
99	Extended DLVO theory: Electrostatic and non-electrostatic forces in oxide suspensions. Advances in Colloid and Interface Science, 2006, 123-126, 5-15.	7.0	123
100	Hofmeister specific-ion effects on enzyme activity and buffer pH: Horseradish peroxidase in citrate buffer. Journal of Molecular Liquids, 2006, 123, 14-19.	2.3	93
101	Interaction of Sodium Ions with Cationic Surfactant Interfaces. Chemistry - A European Journal, 2006, 12, 7889-7898.	1.7	15
102	Specific anion effects on the optical rotation of glucoseand serine. Biopolymers, 2006, 81, 136-148.	1.2	43
103	Ion Specific Interactions Between Pairs of Nanometer Sized Particles in Aqueous Solutions. , 2006, , 74-77.		1
104	The Present State of Molecular Forces. , 2006, , 65-73.		28
105	The Present State of Molecular Forces. , 2006, , 65-73.		1
106	The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities. Journal of Colloid and Interface Science, 2005, 292, 244-254.	5.0	29
107	Energy of an ion crossing a low dielectric membrane: the role of dispersion self-free energy. Biophysical Chemistry, 2005, 114, 95-101.	1.5	41
108	Why forces between proteins follow different Hofmeister series for pH above and below pI. Biophysical Chemistry, 2005, 117, 217-224.	1.5	194

#	Article	IF	CITATIONS
109	Anion Effects on Calixarene Monolayers:Â A Hofmeister Series Study. Langmuir, 2005, 21, 2242-2249.	1.6	43
110	Specific ion effects on the growth rates ofStaphylococcus aureusandPseudomonas aeruginosa. Physical Biology, 2005, 2, 1-7.	0.8	254
111	Hofmeister Effects in Surface Tension of Aqueous Electrolyte Solution. Langmuir, 2005, 21, 2619-2623.	1.6	156
112	Reply to "Comments on â€~Hofmeister Series: Hydrolytic Activity ofAspergillusnigerLipase Depends on Specific Anion Effects'― Journal of Physical Chemistry B, 2005, 109, 14752-14754.	1.2	5
113	Specific Ion Effects in Solutions of Globular Proteins:Â Comparison between Analytical Models and Simulation. Journal of Physical Chemistry B, 2005, 109, 24489-24494.	1.2	52
114	Hofmeister Effects in Biology:  Effect of Choline Addition on the Salt-Induced Super Activity of Horseradish Peroxidase and Its Implication for Salt Resistance of Plants. Journal of Physical Chemistry B, 2005, 109, 16511-16514.	1.2	71
115	Hofmeister Series:Â The Hydrolytic Activity ofAspergillus nigerLipase Depends on Specific Anion Effects. Journal of Physical Chemistry B, 2005, 109, 5406-5408.	1.2	96
116	Nanoparticles of Mg(OH)2:Â Synthesis and Application to Paper Conservation. Langmuir, 2005, 21, 8495-8501.	1.6	170
117	Building bridges between the physical and biological sciences. Cellular and Molecular Biology, 2005, 51, 803-13.	0.3	8
118	Atomic resonance interaction in dielectric media. Physical Review A, 2004, 69, .	1.0	7
119	Specific ion effects: Role of salt and buffer in protonation of cytochrome c. European Physical Journal E, 2004, 13, 239-245.	0.7	25
120	The present state of affairs with Hofmeister effects. Current Opinion in Colloid and Interface Science, 2004, 9, 1-18.	3.4	759
121	Hofmeister effect on enzymatic catalysis and colloidal structures. Current Opinion in Colloid and Interface Science, 2004, 9, 43-47.	3.4	82
122	Why the properties of proteins in salt solutions follow a Hofmeister series. Current Opinion in Colloid and Interface Science, 2004, 9, 48-52.	3.4	67
123	â€~Zur Lehre von der Wirkung der Salze' (about the science of the effect of salts): Franz Hofmeister's historical papers. Current Opinion in Colloid and Interface Science, 2004, 9, 19-37.	3.4	909
124	Hofmeister specific ion effects in two biological systems. Current Opinion in Colloid and Interface Science, 2004, 9, 97-101.	3.4	43
125	Hofmeister effects in cationic microemulsions. Current Opinion in Colloid and Interface Science, 2004, 9, 102-106.	3.4	27
126	Specific anion effects on the aggregation properties of anionic nucleolipids. Current Opinion in Colloid and Interface Science, 2004, 9, 168-172.	3.4	15

#	Article	IF	CITATIONS
127	17th annual meeting of the European Colloid and Interface Science Society : ECIS2003, 21–26 September, 2003, Firenze, Italy. Physical Chemistry Chemical Physics, 2004, 6, E3-E3.	1.3	0
128	Contributions from Dispersion and Born Self-Free Energies to the Solvation Energies of Salt Solutions. Journal of Physical Chemistry B, 2004, 108, 12593-12595.	1.2	59
129	Water of hydration in coagels. Physical Chemistry Chemical Physics, 2004, 6, 1401-1407.	1.3	44
130	Dispersion Self-Free Energies and Interaction Free Energies of Finite-Sized Ions in Salt Solutions. Langmuir, 2004, 20, 7569-7574.	1.6	58
131	Phase Behavior of Homologous Perfluoropolyether Surfactants:Â NMR, SAXS, and Optical Microscopy. Journal of Physical Chemistry B, 2004, 108, 17751-17759.	1.2	17
132	19F NMR Investigation of Mixed Surfactants Partitioning and Kinetic Stability of Fluorinated Nanodroplets in Water. Journal of Physical Chemistry B, 2004, 108, 8201-8207.	1.2	5
133	Osmotic Coefficients and Surface Tensions of Aqueous Electrolyte Solutions:  Role of Dispersion Forces. Journal of Physical Chemistry B, 2004, 108, 2398-2404.	1.2	149
134	The Confederacy in Retreat: an Appreciation of Sten Andersson. Solid State Sciences, 2003, 5, 31-33.	1.5	0
135	The Curious World of Polypseudorotaxanes:Â Cyclodextrins As Probes of Water Structure. Journal of Physical Chemistry B, 2003, 107, 3979-3987.	1.2	55
136	Effect of Water Structure on the Formation of Coagels from Ascorbyl-Alkanoates. Langmuir, 2003, 19, 3222-3228.	1.6	26
137	Hofmeister Effects in pH Measurements:Â Role of Added Salt and Co-Ions. Journal of Physical Chemistry B, 2003, 107, 2875-2878.	1.2	88
138	Specific Ion Effects: Why the Properties of Lysozyme in Salt Solutions Follow a Hofmeister Series. Biophysical Journal, 2003, 85, 686-694.	0.2	189
139	Hofmeister Effect in Coagels of Ascorbic Acid Based Surfactants. Langmuir, 2003, 19, 9583-9591.	1.6	32
140	Specific ion effects: The role of co-ions in biology. Europhysics Letters, 2003, 63, 610-615.	0.7	24
141	Screened Casimir force at finite temperatures: A possible role in nuclear interactions. Physical Review A, 2003, 67, .	1.0	14
142	Hofmeister effects in membrane biology: The role of ionic dispersion potentials. Physical Review E, 2003, 68, 041902.	0.8	52
143	Physical chemistry: The loss of certainty. , 2002, , 1-12.		20
144	Molecular resonance interaction in channels. Europhysics Letters, 2002, 59, 21-27.	0.7	6

#	Article	IF	CITATIONS
145	The Influence of Ionic Dispersion Potentials on Counterion Condensation on Polyelectrolytes. Journal of Physical Chemistry B, 2002, 106, 7908-7912.	1.2	66
146	Ion Specificity of Micelles Explained by Ionic Dispersion Forces. Langmuir, 2002, 18, 6010-6014.	1.6	103
147	Influence of Hofmeister Effects on Surface pH and Binding of Peptides to Membranes. Langmuir, 2002, 18, 8609-8615.	1.6	60
148	Effect of Cations and Anions on the Formation of Polypseudorotaxanes. Journal of Physical Chemistry B, 2002, 106, 2166-2174.	1.2	80
149	Water Absorbency by Wool Fibers:Â Hofmeister Effect. Biomacromolecules, 2002, 3, 1217-1224.	2.6	98
150	A new approach to the measurement of the minimum film formation temperature of latex dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211, 285-293.	2.3	3
151	Superfluidity in the Solar Interior: Implications for Solar Eruptions and Climate. Journal of Fusion Energy, 2002, 21, 193-198.	0.5	11
152	Atom-atom interactions at and between metal surfaces at nonzero temperature. Physical Review A, 2001, 64, .	1.0	15
153	Surface Tension of Electrolytes:  Specific Ion Effects Explained by Dispersion Forces. Langmuir, 2001, 17, 4475-4478.	1.6	272
154	Specific Ion Effects: Why DLVO Theory Fails for Biology and Colloid Systems. Physical Review Letters, 2001, 87, 168103.	2.9	514
155	Mesostructured fluids: a geometrical model predicting experimental data. New Journal of Chemistry, 2001, 25, 563-571.	1.4	15
156	Supra-aggregates. Advances in Colloid and Interface Science, 2001, 89-90, 155-167.	7.0	13
157	Supra-Aggregation: Microphase Formation in Complex Fluids. Advanced Materials, 2000, 12, 119-123.	11.1	26
158	Role of Co-Ion Specificity and Dissolved Atmospheric Gas in Colloid Interaction. Langmuir, 2000, 16, 10087-10091.	1.6	69
159	Mechanism of low-threshold hypersonic cavitation stimulated by broadband laser pump. Physical Review E, 1999, 60, 1681-1690.	0.8	31
160	Surface forces vs. surface compositions. Colloid science from the Gibbs adsorption perspective. Advances in Colloid and Interface Science, 1999, 83, 227-311.	7.0	18
161	On progress in forces since the DLVO theory. Advances in Colloid and Interface Science, 1999, 83, 1-17.	7.0	335
162	Electrostatics of curved fluid membranes: The interplay of direct interactions and fluctuations in charged lamellar phases. Advances in Colloid and Interface Science, 1999, 83, 85-110.	7.0	37

4

#	Article	IF	CITATIONS
163	Direct Relationship Between Shape and Size of Template and Synthesis of Copper Metal Particles. Advanced Materials, 1999, 11, 1358-1362.	11.1	139
164	Temperature dependence of atom-atom interactions. Physical Review A, 1999, 60, 2581-2584.	1.0	51
165	Mesostructured Fluids. 2. Microstructure and Supra-aggregation. Journal of Physical Chemistry B, 1999, 103, 9176-9189.	1.2	27
166	Marangoni "Precursor―in Dynamic Dewetting Transition: Adsorption Pressure Effect. Langmuir, 1999, 15, 3683-3688.	1.6	12
167	Effects of Adsorption of Low-Molecular-Weight Triblock Copolymers on Interactions between Hydrophobic Surfaces in Water. Langmuir, 1999, 15, 3242-3249.	1.6	13
168	Direct Measurement of Hydrophobic Forces:Â A Study of Dissolved Gas, Approach Rate, and Neutron Irradiation. Langmuir, 1999, 15, 1562-1569.	1.6	120
169	Mesostructured Fluids. 1. Cu(AOT)2â^'H2Oâ^'Isooctane in Oil Rich Regions. Journal of Physical Chemistry B, 1999, 103, 9168-9175.	1.2	38
170	Binding of Sodium Dodecyl Sulphate and Dodecyl Trimethyl Ammonium Chloride to β-Lactoglobulin: A Calorimetric Study. International Dairy Journal, 1998, 8, 141-148.	1.5	76
171	Study of the Long-Range Hydrophobic Attraction in Concentrated Salt Solutions and Its Implications for Electrostatic Models. Langmuir, 1998, 14, 3326-3332.	1.6	93
172	Interaction between Surfaces of Fused Silica in Water. Evidence of Cold Fusion and Effects of Cold Plasma Treatment. Langmuir, 1998, 14, 3223-3235.	1.6	67
173	Interaction between Hydrophilic Surfaces in Triblock Copolymer Solution. Langmuir, 1998, 14, 7287-7291.	1.6	14
174	Lifshitz theory of Casimir forces at finite temperature. Physical Review A, 1998, 57, 1870-1880.	1.0	57
175	Comment on "Deformation of fluid interfaces under double-layer forces stabilizes bubble dispersions― Physical Review E, 1998, 57, 7362-7363.	0.8	2
176	Thermodynamics of Transfer of Amphiphiles between the Liquidâ^'Air Interface and a Solid SurfaceWetting Tension Study of Langmuirâ^'Blodgett Films. Langmuir, 1997, 13, 1746-1757.	1.6	24
177	Dewetting of Mica Induced by Simple Organic Ions. Kinetic and Thermodynamic Study. Langmuir, 1997, 13, 5979-5990.	1.6	20
178	Effect of Salts and Dissolved Gas on Optical Cavitation near Hydrophobic and Hydrophilic Surfaces. Langmuir, 1997, 13, 3024-3028.	1.6	95
179	Ion Binding and Ion Specificity:Â The Hofmeister Effect and Onsager and Lifshitz Theories. Langmuir, 1997, 13, 2097-2108.	1.6	569

Lipid Self-Assembly and Function In Biological Systems. , 1997, , 199-235.

#	Article	IF	CITATIONS
181	The Lessons of Chemistry. , 1997, , 43-85.		Ο
182	Surface and structural forces measured between silica surfaces in 1,2-ethanediol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 129-130, 23-32.	2.3	16
183	Low-temperature synthesis and characterization of a stable colloidal TPA-silicalite-1 suspension. Zeolites, 1997, 18, 379-386.	0.9	52
184	Molecular Forces and Self-Assembly. , 1997, , 87-140.		10
185	Beyond Flatland: The Geometric Forms due to Self-Assembly. , 1997, , 141-197.		7
186	Adsorption Forces between Hydrophobic Monolayers. Langmuir, 1996, 12, 1936-1943.	1.6	61
187	Onset of Hydrophobic Attraction at Low Surfactant Concentrations. Langmuir, 1996, 12, 3531-3535.	1.6	38
188	Surface Activity and Ion Exchange. A StudyviaSurface Tension, Wetting Tension, and Surface Force Techniques. Langmuir, 1996, 12, 836-850.	1.6	28
189	Remarks on the Limitation of the Range of the Hydrophobic Force. Langmuir, 1996, 12, 4969-4970.	1.6	9
190	Dressed polyions, counterion condensation, and adsorption excess in polyelectrolyte solutions Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4342-4344.	3.3	41
191	Effect of Hydrocarbon Chain Length on Yield of Lipase Catalyzed Triglyceride Synthesis in Microemulsion. Journal of Colloid and Interface Science, 1996, 181, 341-343.	5.0	6
192	Correlations and Thermodynamic Coefficients in Dilute Asymmetric Electrolyte Solutions. The Journal of Physical Chemistry, 1996, 100, 1330-1335.	2.9	19
193	Effects of Dissolved Gas on Emulsions, Emulsion Polymerization, and Surfactant Aggregation. The Journal of Physical Chemistry, 1996, 100, 15503-15507.	2.9	75
194	Ternary microemulsions as model disordered media. AICHE Journal, 1995, 41, 1295-1305.	1.8	15
195	Krister Fontell (1921-1994). Journal of Colloid and Interface Science, 1995, 169, 255.	5.0	3
196	Submicrocavity Structure of Water between Hydrophobic and Hydrophilic Walls as Revealed by Optical Cavitation. Journal of Colloid and Interface Science, 1995, 173, 443-447.	5.0	127
197	Synthesis of Fe3N by mechano-chemical reactions between iron and organic Hx(CN)6 ring compounds. Journal of Materials Science, 1995, 30, 5514-5521.	1.7	15
198	Surfactant-assisted ball milling of BaFe12O19 ferrite dispersion. Materials Chemistry and Physics, 1995, 40, 21-29.	2.0	32

#	Article	IF	CITATIONS
199	Dissolution of ZrSiO4 after mechanical milling with Al2O3. Materials Chemistry and Physics, 1995, 40, 105-109.	2.0	13
200	Mechanochemical processing of ZrSiO4. Materials Chemistry and Physics, 1995, 40, 73-81.	2.0	23
201	Diffusion in Model Disordered Media. Physical Review Letters, 1995, 75, 653-656.	2.9	41
202	Microstructure of Perfluoropolyether Water/Oil Microemulsions. The Journal of Physical Chemistry, 1995, 99, 17772-17777.	2.9	29
203	Synthesis of Copper Nanosize Particles in Anionic Reverse Micelles: Effect of the Addition of a Cationic Surfactant on the Size of the Crystallites. Langmuir, 1995, 11, 2385-2392.	1.6	99
204	Replacement reaction induced by ball milling of silica in nitrogen. Scripta Metallurgica Et Materialia, 1995, 32, 19-22.	1.0	8
205	Some Aqueous Solution and Surface Properties of Dialkyl Sulfosuccinate Surfactants. The Journal of Physical Chemistry, 1994, 98, 11512-11518.	2.9	25
206	Model disordered media provided by ternary microemulsions. Physical Review E, 1994, 50, 2839-2843.	0.8	31
207	Reduction of ilmenite by surfactant-assisted mechanochemical treatment. Journal of Materials Science Letters, 1994, 13, 1428-1429.	0.5	7
208	The Effect of Solution Behavior of Insulin on Interactions between Adsorbed Layers of Insulin. Journal of Colloid and Interface Science, 1994, 164, 136-150.	5.0	72
209	Nitriding reactions of Tiî—Al system induced by ball milling in ammonia gas. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 187, 51-55.	2.6	21
210	Structural and magnetic characteristic of novel method of Fe/sub 2/O/sub 3/⇒Fe/sub 3/O/sub 4/ reduction by magnetomechanical activation. IEEE Transactions on Magnetics, 1994, 30, 4725-4727.	1.2	13
211	Preparation of Fe/sub 3/O/sub 4/ and γ-Fe/sub 2/O/sub 3/ powders by magnetomechanical activation of hematite. IEEE Transactions on Magnetics, 1994, 30, 732-734.	1.2	72
212	Preparation of highâ€coercivity fine barium ferrite powder. Journal of Applied Physics, 1994, 76, 6065-6067.	1.1	25
213	Magnetic properties of Ba-ferrite powders prepared by surfactant assisted ball milling. IEEE Transactions on Magnetics, 1994, 30, 717-719.	1.2	7
214	Effect of electrolytes on bubble coalescence. Nature, 1993, 364, 317-319.	13.7	307
215	The density of silicon-rich zeolite frameworks. Acta Crystallographica Section A: Foundations and Advances, 1993, 49, 586-589.	0.3	11
216	Electrokinetic and magnetic properties of submicron BaFe12O19 ferrite powder dispersions. Materials Chemistry and Physics, 1993, 35, 31-35.	2.0	12

#	Article	IF	CITATIONS
217	The effect of electrolytes on bubble coalescence in water. The Journal of Physical Chemistry, 1993, 97, 10192-10197.	2.9	465
218	Magnetic properties of aerosol synthesized Co-substituted spinel ferrites. IEEE Transactions on Magnetics, 1993, 29, 2649-2651.	1.2	5
219	Lamellar to vesicle transitions to highly charged bilayers. Langmuir, 1993, 9, 2844-2850.	1.6	19
220	Hydrophobic force: lateral enhancement of subcritical fluctuations. Langmuir, 1993, 9, 3618-3624.	1.6	112
221	Adsorption in zeolites, dispersion self-energy, and Gaussian curvature. The Journal of Physical Chemistry, 1993, 97, 661-665.	2.9	31
222	Magnetic properties of Co/sub 70.3/Si/sub 15/B/sub 10/Fe/sub 4.7/ amorphous powders from crystalline ribbons. IEEE Transactions on Magnetics, 1993, 29, 2631-2633.	1.2	1
223	Self-assembly of linear block copolymers. Relative stability of hyperbolic phases. Macromolecules, 1993, 26, 6782-6788.	2.2	10
224	pH-dependent interactions between adsorbed chitosan layers. Langmuir, 1992, 8, 1406-1412.	1.6	254
225	Möbius, Mellin, and mathematical physics. Physica A: Statistical Mechanics and Its Applications, 1992, 186, 441-481.	1.2	21
226	Preparation of fine, hollow, spherical BaFe12O19 powders. Materials Chemistry and Physics, 1992, 32, 43-48.	2.0	15
227	Some remarks on quasi-crystal structure. Acta Crystallographica Section A: Foundations and Advances, 1992, 48, 640-649.	0.3	8
228	Magnetic properties of Ti5Si3contaminated by Fe during mechanical alloying processes. Journal of Applied Physics, 1991, 70, 6280-6282.	1.1	2
229	Molecular layering in a liquid adsorbed film at room temperature. Langmuir, 1991, 7, 1843-1845.	1.6	13
230	Inadequacy of Lifshitz theory for thin liquid films. Physical Review Letters, 1991, 66, 2084-2087.	2.9	127
231	The bending modulus of ionic lamellar phases. Langmuir, 1991, 7, 590-595.	1.6	40
232	Application of surface active substances in mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 134, 1346-1349.	2.6	29
233	Structure and magnetic properties of aerosol synthesized barium ferrite particles. Journal of Applied Physics, 1991, 70, 5909-5911.	1.1	28
234	Sten Andersson and the Language of Shape: An Interpretation Acta Chemica Scandinavica, 1991, 45, 775-780.	0.7	6

#	Article	IF	CITATIONS
235	Effect of divalent electrolyte on the hydrophobic attraction. The Journal of Physical Chemistry, 1990, 94, 8004-8006.	2.9	123
236	Measurement of the interactions between membranes in a stack. Nature, 1990, 346, 252-254.	13.7	55
237	Magnetic properties of Co/sub 70.4/Fe/sub 4.6/Si/sub 15/B/sub 10/ surfactant assisted ball milled amorphous powders. IEEE Transactions on Magnetics, 1990, 26, 1840-1842.	1.2	14
238	Competitiion for adsorption sites by hydrated ions. Journal of Colloid and Interface Science, 1990, 134, 305-311.	5.0	34
239	Supra-self assembly: Vesicle—micelle equilibrium. Colloids and Surfaces, 1990, 46, 213-230.	0.9	20
240	Measurement of the interaction between adsorbed polyelectrolytes: gelatin on mica surfaces. The Journal of Physical Chemistry, 1990, 94, 4611-4617.	2.9	74
241	Chen's inversion formula. Physical Review A, 1990, 42, 3643-3645.	1.0	21
242	Experimental Study of Solvation Forces. , 1990, , 81-97.		1
243	The Double-Layer Interaction in Asymmetric Electrolytes. Europhysics Letters, 1990, 12, 471-477.	0.7	60
244	A disordered lamellar structure in the isotropic phase of a ternary double-chain surfactant system. Journal De Physique, 1990, 51, 2605-2628.	1.8	41
245	Curvature energy of surfactant interfaces confined to the plaquettes of a cubic lattice. Langmuir, 1990, 6, 1055-1062.	1.6	39
246	Scattering as a critical test of microemulsion structural models. , 1990, , 20-29.		36
247	Undulations of charged membranes. Langmuir, 1990, 6, 159-162.	1.6	42
248	Observation of two phases within the cubic phase region of a ternary surfactant solution. Langmuir, 1990, 6, 1136-1140.	1.6	58
249	Multilayer adsorption of cytochrome c on mica around isoelectric pH. Langmuir, 1990, 6, 1704-1708.	1.6	20
250	Adsorption of cetyltrimethylammonium bromide to mica surfaces below the critical micellar concentration. Colloids and Surfaces, 1989, 40, 31-41.	0.9	129
251	The flotation of quartz using a double-chained cationic surfactant. Journal of Colloid and Interface Science, 1989, 128, 66-75.	5.0	24
252	Conformation of surface bound polyelectrolytes: I. Implications for cell electrophoresis. Journal of Theoretical Biology, 1989, 137, 71-89.	0.8	3

#	Article	IF	CITATIONS
253	Curvature elasticity of charged membranes. Langmuir, 1989, 5, 1121-1123.	1.6	157
254	Specific heat is a useful indicator of microstructural variation in surfactant solutions. Langmuir, 1989, 5, 1427-1430.	1.6	13
255	Device for measuring the force and separation between two surfaces down to molecular separations. Review of Scientific Instruments, 1989, 60, 3135-3138.	0.6	202
256	Interaction of hydrocarbon monolayer surfaces across nâ€alkanes: A steric repulsion. Journal of Chemical Physics, 1989, 90, 5801-5805.	1.2	19
257	Statistical mechanics and small-angle scattering in one-dimensional aggregating fluids. The Journal of Physical Chemistry, 1989, 93, 4936-4940.	2.9	1
258	Phase boundaries for ternary microemulsions: predictions of a geometric model. The Journal of Physical Chemistry, 1989, 93, 1464-1471.	2.9	69
259	Forces between bilayers of cetyltrimethylammonium bromide in micellar solutions. Journal of Colloid and Interface Science, 1988, 126, 569-578.	5.0	105
260	The attractive forces between polar lipid bilayers. Biophysical Journal, 1988, 53, 457-460.	0.2	50
261	Beyond Poisson–Boltzmann: Images and correlations in the electric double layer. I. Counterions only. Journal of Chemical Physics, 1988, 88, 4987-4996.	1.2	164
262	Double-layer and solvation forces measured in a molten salt and its mixtures with water. The Journal of Physical Chemistry, 1988, 92, 3531-3537.	2.9	222
263	Beyond Poisson–Boltzmann: Images and correlations in the electric double layer. II. Symmetric electrolyte. Journal of Chemical Physics, 1988, 89, 4358-4367.	1.2	131
264	The disordered open connected model of microemulsions. , 1988, , 90-95.		21
265	Small-angle x-ray scattering from ternary microemulsions determines microstructure. The Journal of Physical Chemistry, 1988, 92, 2286-2293.	2.9	102
266	Forces between bilayers of a cationic surfactant with hydroxylated headgroups: effects of interbilayer adhesion on the interactions. The Journal of Physical Chemistry, 1988, 92, 4155-4159.	2.9	23
267	Counterion and co-ion specificity in ionic microemulsions. The Journal of Physical Chemistry, 1987, 91, 1823-1826.	2.9	29
268	Interfacial tension of ionic microemulsions. The Journal of Physical Chemistry, 1987, 91, 2320-2324.	2.9	31
269	Meaning and structure of amphiphilic phases: inferences from video-enhanced microscopy and cryotransmission electron microscopy. The Journal of Physical Chemistry, 1987, 91, 674-685.	2.9	65
270	Microstructure from x-ray scattering: the disordered open connected model of microemulsions. The Journal of Physical Chemistry, 1987, 91, 3814-3820.	2.9	105

#	Article	IF	CITATIONS
271	Random Connected Cylinders: a New Structure in Three-Component Microemulsions. Europhysics Letters, 1987, 4, 561-568.	0.7	75
272	Double-layer forces in ionic micellar solutions. The Journal of Physical Chemistry, 1987, 91, 2902-2904.	2.9	113
273	Interactions between a positively charged hydrophobic surface and a negatively charged bare mica surface. Journal of Colloid and Interface Science, 1987, 118, 68-79.	5.0	68
274	Vesicle and micelle formation in a double-chained anionic surfactant: Counterion complexation by a macrocyclic ligand. Journal of Colloid and Interface Science, 1987, 116, 598-601.	5.0	22
275	Direct Visualization of Amphiphilic Phases by Video Enhanced Microscopy and Cryo-Transmission Electron Microscopy. Springer Proceedings in Physics, 1987, , 202-206.	0.1	0
276	Oil, water, and surfactant: properties and conjectured structure of simple microemulsions. The Journal of Physical Chemistry, 1986, 90, 2817-2825.	2.9	216
277	Molecular forces in the self-organization of amphiphiles. The Journal of Physical Chemistry, 1986, 90, 226-234.	2.9	220
278	Curvature as a determinant of microstructure and microemulsions. The Journal of Physical Chemistry, 1986, 90, 842-847.	2.9	152
279	Counterion specificity as the determinant of surfactant aggregation. The Journal of Physical Chemistry, 1986, 90, 1853-1859.	2.9	137
280	Effect of pentanol adsorption on the forces between bilayers of a cationic surfactant. The Journal of Physical Chemistry, 1986, 90, 5841-5845.	2.9	15
281	The Rideal Lecture. Vesicles and molecular forces. Faraday Discussions of the Chemical Society, 1986, 81, 1.	2.2	66
282	Direct measurements of surface forces between bilayers of double-chained quaternary ammonium acetate and bromide surfactants. The Journal of Physical Chemistry, 1986, 90, 1637-1642.	2.9	172
283	Interaction of amphiphilic aggregates with cells of the immune system. Trends in Immunology, 1986, 7, 278-283.	7.5	41
284	Interactions between water—stable hydrophobic Langmuir—Blodgett monolayers on mica. Journal of Colloid and Interface Science, 1986, 114, 234-242.	5.0	266
285	Aqueous solution properties of nonionic n-dodecyl .betaD-maltoside micelles. The Journal of Physical Chemistry, 1986, 90, 4581-4586.	2.9	66
286	Some Observations on Phase Diagrams and Structure in Binary and Ternary Systems of Didodecyldimethylammonium Bromide Acta Chemica Scandinavica, 1986, 40a, 247-256.	0.7	127
287	Video enhanced differential interference contrast microscopy: Characterizing colloidal materials. Journal of Solution Chemistry, 1985, 14, 141-152.	0.6	9
288	Attractive forces between uncharged hydrophobic surfaces: direct measurements in aqueous solution. Science, 1985, 229, 1088-1089.	6.0	475

#	Article	IF	CITATIONS
289	Immunosuppressive effects of cationic vesicles. Molecular Immunology, 1985, 22, 609-612.	1.0	31
290	And again the micelle diffusion coefficient. Journal of Colloid and Interface Science, 1984, 101, 292-295.	5.0	11
291	Video enhanced differential interference contrast microscopy: a new tool for the study of association colloids and prebiotic assemblies. Journal of Colloid and Interface Science, 1984, 100, 287-301.	5.0	67
292	Rapid characterization of colloidal systems by video-enhanced light microscopy. Journal of Colloid and Interface Science, 1984, 99, 593-596.	5.0	14
293	Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160�C. Journal of Solution Chemistry, 1984, 13, 87-101.	0.6	144
294	Ion binding and dressed micelles. The Journal of Physical Chemistry, 1984, 88, 6344-6348.	2.9	195
295	Properties and structure of three-component ionic microemulsions. The Journal of Physical Chemistry, 1984, 88, 1631-1634.	2.9	125
296	Role of oils and other factors in microemulsion design. The Journal of Physical Chemistry, 1984, 88, 5855-5857.	2.9	84
297	Ion–solvent interactions and the activity coefficients of real electrolyte solutions. Journal of the Chemical Society, Faraday Transactions 2, 1984, 80, 115-139.	1.1	62
298	Spontaneous vesicles. Journal of the American Chemical Society, 1984, 106, 4279-4280.	6.6	113
299	Surfactant diffusion: New results and interpretations. Journal of Colloid and Interface Science, 1983, 93, 184-204.	5.0	102
300	The curious world of hydroxide surfactants. Spontaneous vesicles and anomalous micelles. The Journal of Physical Chemistry, 1983, 87, 5020-5025.	2.9	94
301	Ion binding and the hydrophobic effect. The Journal of Physical Chemistry, 1983, 87, 5025-5032.	2.9	193
302	Electrostatic curvature contributions to interfacial tension of micellar and microemulsion phases. The Journal of Physical Chemistry, 1983, 87, 2996-2998.	2.9	46
303	Spontaneous Vesicles Formed from Hydroxide Surfactants: Evidence from Electron Microscopy. Science, 1983, 221, 1047-1048.	6.0	128
304	Three-component ionic microemulsions. The Journal of Physical Chemistry, 1983, 87, 538-540.	2.9	35
305	Hierarchies of forces: The last 150 years. Advances in Colloid and Interface Science, 1982, 16, 3-15.	7.0	18
306	Micelles, vesicles and microemulsions. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 601.	1.1	775

18

#	Article	IF	CITATIONS
307	An ion-exchange model for thylakoid stacking in chloroplasts. FEBS Letters, 1981, 129, 193-196.	1.3	29
308	Surface forces - the last 30 A. Pure and Applied Chemistry, 1981, 53, 2135-2147.	0.9	34
309	The structure of electrolytes at charged surfaces: The primitive model. Journal of Chemical Physics, 1981, 74, 1472-1478.	1.2	147
310	A selfâ€consistent study of ion adsorption and discrete charge effects in the electrical double layer. Journal of Chemical Physics, 1980, 72, 5159-5162.	1.2	13
311	Solvent structure in particle interactions. Low pressure effects and analytic limits. Journal of the Chemical Society, Faraday Transactions 2, 1980, 76, 776.	1.1	11
312	Long-range vs. short-range forces. The present state of play. The Journal of Physical Chemistry, 1980, 84, 1423-1430.	2.9	78
313	A model of solvent structure around ions. Journal of Chemical Physics, 1979, 70, 2946-2957.	1.2	178
314	Competitive adsorption from binary mixtures: Adhesive hard sphere model. Journal of Colloid and Interface Science, 1979, 72, 27-40.	5.0	23
315	Dispersion interactions across binary liquid mixtures. A proper account of structural effects. Journal of Colloid and Interface Science, 1979, 68, 462-470.	5.0	17
316	Forces due to solvent structure in particle interactions: the one-dimensional problem. Journal of the Chemical Society, Faraday Transactions 2, 1979, 75, 556.	1.1	11
317	Reply to comments on the theory of dipolar fluids. Journal of Chemical Physics, 1979, 70, 1578-1578.	1.2	1
318	Ordering in colloidal systems. Advances in Colloid and Interface Science, 1978, 9, 37-60.	7.0	101
319	Solvent mediated interactions—solute size effects and predictions of mean field theory. Chemical Physics Letters, 1978, 56, 533-536.	1.2	6
320	Range of the screened coulomb interaction in electrolytes and double layer problems. Chemical Physics Letters, 1978, 53, 397-399.	1.2	55
321	On the theory of dipolar fluids and ion–dipole mixtures. Journal of Chemical Physics, 1978, 69, 691-696.	1.2	46
322	Short-range interactions mediated by a solvent with surface adhesion. Molecular Physics, 1978, 35, 1669-1679.	0.8	45
323	Solvent structure in particle interactions. Part 1.—The asymptotic regime. Journal of the Chemical Society, Faraday Transactions 2, 1978, 74, 1098-1115.	1.1	32
324	Solvent structure in particle interactions. Part 2.—Forces at short range. Journal of the Chemical Society, Faraday Transactions 2, 1978, 74, 1116-1125.	1.1	48

#	Article	IF	CITATIONS
325	Towards a microscopic theory of hydrophobic solutions. Journal of the Chemical Society, Faraday Transactions 2, 1978, 74, 2050.	1.1	11
326	Onsager transition in hard plate fluid. Journal of the Chemical Society, Faraday Transactions 2, 1977, 73, 84-88.	1.1	34
327	Role of solvent structure in solution theory. Journal of the Chemical Society, Faraday Transactions 2, 1977, 73, 630-648.	1.1	99
328	Theory of self-assembly of lipid bilayers and vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1977, 470, 185-201.	1.4	830
329	Phase transition in charged lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1977, 469, 335-344.	1.4	54
330	Intermolecular forces—the long and short of it. Journal of Colloid and Interface Science, 1977, 58, 14-25.	5.0	70
331	Hard sphere structural effects in colloid systems. Chemical Physics Letters, 1977, 51, 257-260.	1.2	31
332	Effect of spatial dispersion on van der Waals interactions between molecules. Solid State Communications, 1977, 21, 899-902.	0.9	1
333	Energy of interaction between a monolayer and a dielectric adsorbent. Journal of the Chemical Society, Faraday Transactions 2, 1976, 72, 1513.	1.1	6
334	Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2, 1976, 72, 1525.	1.1	4,488
335	Refractive index of arrays of spheres and cylinders. Journal of Theoretical Biology, 1976, 56, 125-149.	0.8	28
336	Phase transitions in aqueous suspensions of spherical colloid particles. Chemical Physics Letters, 1976, 43, 353-357.	1.2	39
337	Comment on Van Der Waals forces between heavy alkali atoms and gold surfaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 1976, 59, 111-112.	0.9	4
338	Dispersion interaction of crossed mica cylinders: a reanalysis of the Israelachvili–Tabor experiments. Journal of the Chemical Society Faraday Transactions I, 1976, 72, 2526.	1.0	63
339	Theory of dispersion interactions between macroscopic bodies. Journal of the Chemical Society, Faraday Transactions 2, 1975, 71, 119.	1.1	24
340	Self-energy in adsorption. Faraday Discussions of the Chemical Society, 1975, 59, 13.	2.2	18
341	Conformation of a non-interacting polymer near a "sticky―wall. Journal of the Chemical Society, Faraday Transactions 2, 1975, 71, 235-268.	1.1	27
342	Phase transitions in polymer solutions and the prediction of ? temperatures. Journal of the Chemical Society, Faraday Transactions 2, 1974, 70, 586.	1.1	1

#	Article	IF	CITATIONS
343	Dispersion forces in physical adsorption. Journal of the Chemical Society, Faraday Transactions 2, 1974, 70, 637.	1.1	21
344	Resonance transfer of molecular excitation energy: Enhancement in channels. Physics Letters, Section A: General, Atomic and Solid State Physics, 1973, 43, 495-496.	0.9	2
345	Deviations of the van der waals energy for two interacting spheres from the predictions of Hamaker theory. Journal of Colloid and Interface Science, 1973, 45, 55-68.	5.0	32
346	A theoretical study of hydrocarbon adsorption on water surfaces using Lifshitz theory. Journal of Colloid and Interface Science, 1973, 45, 69-80.	5.0	75
347	van der Waals forces between cylinders: Arrays of thin cylinders and three body forces. Journal of Theoretical Biology, 1973, 41, 149-160.	0.8	2
348	Van der Waals forces in many-layered structures: Generalizations of the lifshitz result for two semi-infinite media. Journal of Theoretical Biology, 1973, 38, 101-109.	0.8	92
349	Response of nematic liquid crystals to Van Der Waals forces. Physica, 1973, 66, 111-130.	0.9	28
350	van der Waals forces between cylinders: Thin rods inclined at an angle. Journal of Chemical Physics, 1973, 59, 1246-1252.	1.2	8
351	Van der Waals forces between thin cylinders: New features due to conduction processes. Journal of Chemical Physics, 1973, 58, 744-750.	1.2	31
352	van der Waals Forces between Cylinders. Biophysical Journal, 1973, 13, 359-369.	0.2	44
353	van der Waals Forces between Cylinders. Biophysical Journal, 1973, 13, 370-384.	0.2	20
354	Multimolecular adsorption on cell surfaces under the influence of van der Waals forces. Journal of the Chemical Society, Faraday Transactions 2, 1973, 69, 658.	1.1	3
355	Boundary effects on the dispersion force between oscillators. Journal of Physics A: Mathematical Nuclear and General, 1973, 6, 1140-1148.	1.0	22
356	Dispersion contributions to surface energy. Journal of Chemical Physics, 1973, 59, 6157-6162.	1.2	46
357	Dispersion forces between oscillators: a semi-classical treatment. Journal of Physics A: General Physics, 1972, 5, 1447-1452.	0.8	23
358	Van der Waals Forces in Electrolytes. Journal of Chemical Physics, 1972, 56, 5797-5801.	1.2	103
359	On Black Body Radiation and the Attractive Force between Two Metal Plates. American Journal of Physics, 1972, 40, 674-678.	0.3	11
360	A Class of Mean Field Models. Journal of Mathematical Physics, 1972, 13, 468-474.	0.5	22

#	Article	IF	CITATIONS
361	van der Waals Forces between Two Spheres. Journal of Chemical Physics, 1972, 56, 1117-1126.	1.2	61
362	Van der Waals attraction between conducting molecules. Physics Letters, Section A: General, Atomic and Solid State Physics, 1972, 39, 301-302.	0.9	20
363	Van der Waals forces between thin anisotropic cylinders. Journal of Theoretical Biology, 1972, 37, 251-259.	0.8	15
364	Calculation of van der Waals forces across mica plates using Lifshitz theory. Journal of Colloid and Interface Science, 1972, 40, 406-408.	5.0	19
365	Calculations of van der Waals forces across films of liquid helium using Lifshitz theory. Journal of Low Temperature Physics, 1971, 5, 177-189.	0.6	39
366	Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. Journal of Theoretical Biology, 1971, 31, 405-428.	0.8	656
367	Calculations, using lifshitz theory, of the height vs. thickness for vertical liquid helium films. Solid State Communications, 1971, 9, 1045-1047.	0.9	28
368	Toward the correct calculation of van der Waals interactions between lyophobic colloids in an aqueous medium. Journal of Colloid and Interface Science, 1971, 37, 332-341.	5.0	91
369	Exact interaction energy between two anisotropic polarizable dipoles. Journal of Physics B: Atomic and Molecular Physics, 1971, 4, L81-L83.	1.6	3
370	van der Waals forces and critical phenomena. Journal of Physics C: Solid State Physics, 1971, 4, L235-L238.	1.5	0
371	A note on the extension of the Lifshitz theory of van der Waals forces to magnetic media. Journal of Physics C: Solid State Physics, 1971, 4, 1988-1993.	1.5	66
372	Kinetic equations for surface adsorption. Biopolymers, 1970, 9, 103-111.	1.2	2
373	On the macroscopic theory of temperature-dependent van der Waals forces. Journal of Statistical Physics, 1970, 2, 323-328.	0.5	139
374	Determination of critical behaviour from series expansions in lattice statistics. IV. Journal of Physics C: Solid State Physics, 1970, 3, 1641-1651.	1.5	15
375	van der Waals Forces. Biophysical Journal, 1970, 10, 646-663.	0.2	291
376	Temperature-Dependent van der Waals Forces. Biophysical Journal, 1970, 10, 664-674.	0.2	175
377	van der Waals Interactions in Multilayer Systems. Journal of Chemical Physics, 1970, 53, 3398-3402.	1.2	130
378	Theory of the Helix-Random Coil Transformation. Macromolecules, 1970, 3, 34-42.	2.2	29

#	Article	IF	CITATIONS
379	Nuclear Magnetic Resonance Investigation of the Helix to Random Coil Transformation in Poly (α-amino) Tj ETQq1	1 0.7843 2.2	14 rgBT /0
380	van der Waals Forces across Triple‣ayer Films. Journal of Chemical Physics, 1970, 52, 4578-4587.	1.2	210
381	Determination of critical behaviour in lattice statistics from series expansions II. Journal of Physics C: Solid State Physics, 1969, 2, 1889-1899.	1.5	24
382	Kinetics of a Sequence of Firstâ€Order Reactions. Journal of Chemical Physics, 1969, 51, 5028-5033.	1.2	23
383	Application of the Lifshitz Theory to the Calculation of Van der Waals Forces across Thin Lipid Films. Nature, 1969, 224, 1197-1198.	13.7	162
384	The Effect of Quantum Correlations on Electron-Scattering Opacities. Astrophysical Journal, 1969, 156, 1069.	1.6	20
385	Further asymptotic expansions for the error functional. Mathematics of Computation, 1969, 23, 71-71.	1.1	4
386	Determination of critical behaviour in lattice statistics from series expansions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1968, 26, 180-181.	0.9	6
387	Asymptotic Behavior of the Pair Distribution Function of a Classical Electron Gas. Physical Review, 1968, 174, 280-289.	2.7	41
388	Determination of Critical Behavior in Lattice Statistics from Series Expansions. I. Physical Review, 1968, 172, 554-558.	2.7	18
389	Quantum Corrections to the Pair Distribution Function of a Classical Plasma. Journal of Mathematical Physics, 1968, 9, 745-752.	0.5	24
390	Stochastic Models for Secondâ€Order Chemical Reaction Kinetics. Time Course of Reactions. Journal of Chemical Physics, 1967, 46, 1626-1645.	1.2	8
391	Numerical quadrature and asymptotic expansions. Mathematics of Computation, 1967, 21, 162-178.	1.1	113
392	Generalised functions and divergent integrals. Numerische Mathematik, 1966, 8, 444-457.	0.9	31
393	Plasmon Damping in Metals. Physical Review, 1966, 145, 209-217.	2.7	52
394	Stochastic Models for Secondâ€Order Chemical Reaction Kinetics. The Equilibrium State. Journal of Chemical Physics, 1966, 45, 2145-2155.	1.2	71
395	Specific heat of a degenerate electron gas. Annals of Physics, 1964, 28, 220-224.	1.0	7
396	Asymptotic Form of the Coefficients of Some Isingâ€Model Series. Journal of Mathematical Physics, 1963, 4, 679-685.	0.5	32

0

#	Article	IF	CITATIONS
397	Self assembly: overview. , 0, , 253-292.		1
398	Bicontinuous phases and other structures: forces at work in biological systems. , 0, , 308-328.		0
399	Different approaches to, and different kinds of, molecular forces. , 0, , 17-34.		0
400	The balance of forces. , 0, , 65-83.		0
401	Quantum mechanical forces in condensed media. , 0, , 84-111.		0
402	The extension of the Lifshitz theory to include electrolytes and Hofmeister effects. , 0, , 112-145.		0
403	Effects of dissolved gas and other solutes on hydrophobic interactions. , 0, , 232-250.		0
404	Self assembly in theory and practice. , 0, , 293-307.		0
405	Forces at work: a miscellany of issues. , 0, , 348-359.		0

406 Emulsions and microemulsions. , 0, , 329-347.