
John C Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3377333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BAK1, an Arabidopsis LRR Receptor-like Protein Kinase, Interacts with BRI1 and Modulates Brassinosteroid Signaling. Cell, 2002, 110, 213-222.	28.9	1,231
2	Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7, 301-308.	8.8	1,080
3	Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis. Plant Cell, 2007, 19, 63-73.	6.6	727
4	Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 1990, 345, 743-746.	27.8	384
5	<i>HAESA</i> , an <i>Arabidopsis</i> leucine-rich repeat receptor kinase, controls floral organ abscission. Genes and Development, 2000, 14, 108-117.	5.9	337
6	Regulation of floral organ abscission in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15629-15634.	7.1	296
7	The FHA domain proteins DAWDLE in <i>Arabidopsis</i> and SNIP1 in humans act in small RNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10073-10078.	7.1	284
8	Structure and function of the receptor-like protein kinases of higher plants. Plant Molecular Biology, 1994, 26, 1599-1609.	3.9	238
9	Control of Meristem Development by CLAVATA1 Receptor Kinase and Kinase-Associated Protein Phosphatase Interactions1. Plant Physiology, 1998, 117, 1217-1225.	4.8	233
10	PLANT PROTEIN PHOSPHATASES. Annual Review of Plant Biology, 1996, 47, 101-125.	14.3	197
11	Receptor-like protein kinases: the keys to response. Current Opinion in Plant Biology, 2003, 6, 339-342.	7.1	197
12	A MAPK Cascade Downstream of ERECTA Receptor-Like Protein Kinase Regulates <i>Arabidopsis</i> Inflorescence Architecture by Promoting Localized Cell Proliferation Â. Plant Cell, 2013, 24, 4948-4960.	6.6	191
13	The Arabidopsis Unannotated Secreted Peptide Database, a Resource for Plant Peptidomics. Plant Physiology, 2006, 142, 831-838.	4.8	189
14	Receptorâ€like protein kinase genes of <i>Arabidopsis thaliana</i> . Plant Journal, 1993, 3, 451-456.	5.7	169
15	A Mutant Arabidopsis Heterotrimeric G-Protein β Subunit Affects Leaf, Flower, and Fruit Development. Plant Cell, 2001, 13, 2631-2641.	6.6	152
16	Haplo-Insufficiency of <i>MPK3</i> in <i>MPK6</i> Mutant Background Uncovers a Novel Function of These Two MAPKs in <i>Arabidopsis</i> Ovule Development. Plant Cell, 2008, 20, 602-613.	6.6	148
17	14-3-3 and FHA Domains Mediate Phosphoprotein Interactions. Annual Review of Plant Biology, 2009, 60, 67-91.	18.7	141
18	Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases: implications for transmembrane signaling in plants. Plant Journal, 1997, 12, 83-95.	5.7	126

JOHN C WALKER

#	Article	IF	CITATIONS
19	BRL1, a leucineâ€rich repeat receptorâ€like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant Journal, 2004, 40, 399-409.	5.7	126
20	Plant transmembrane receptors: new pieces in the signaling puzzle. Trends in Biochemical Sciences, 1996, 21, 70-73.	7.5	113
21	DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant Journal, 2004, 37, 668-677.	5.7	111
22	Functional properties of the anaerobic responsive element of the maize Adh1 gene. Plant Molecular Biology, 1990, 15, 593-604.	3.9	91
23	A MAPK cascade downstream of IDA–HAE/HSL2 ligand–receptor pair in lateral root emergence. Nature Plants, 2019, 5, 414-423.	9.3	90
24	A microRNA–transcription factor module regulates lateral organ size and patterning in Arabidopsis. Plant Journal, 2009, 58, 450-463.	5.7	88
25	Biochemical properties of the autophosphorylation of RLK5, a receptor-like protein kinase from Arabidopsis thaliana. BBA - Proteins and Proteomics, 1994, 1208, 65-74.	2.1	86
26	Challenges in understanding RLK function. Current Opinion in Plant Biology, 1998, 1, 388-392.	7.1	80
27	Advances in abscission signaling. Journal of Experimental Botany, 2018, 69, 733-740.	4.8	80
28	Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2by RNA-Seq. BMC Genomics, 2013, 14, 37.	2.8	78
29	Receptor serine/threonine protein kinases in signalling: analysis of the erecta receptorâ€ŀike kinase ofArabidopsis thaliana. New Phytologist, 2001, 151, 133-143.	7.3	77
30	Floral organ abscission is regulated by a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2906-2911.	7.1	70
31	Biochemical Characterization of the Kinase Domain of the Rice Disease Resistance Receptor-like Kinase XA21. Journal of Biological Chemistry, 2002, 277, 20264-20269.	3.4	65
32	Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission. Plant Physiology, 2016, 172, 510-520.	4.8	65
33	Molecular Evolution of Type 1 Serine/Threonine Protein Phosphatases. Molecular Phylogenetics and Evolution, 1999, 12, 57-66.	2.7	61
34	DAWDLE, a Forkhead-Associated Domain Gene, Regulates Multiple Aspects of Plant Development. Plant Physiology, 2006, 141, 932-941.	4.8	55
35	Letting Go is Never Easy: Abscission and Receptorâ€< scp>Like Protein Kinases. Journal of Integrative Plant Biology, 2013, 55, 1251-1263.	8.5	55
36	Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana. Plant Molecular Biology, 2005, 57, 773-784.	3.9	54

JOHN C WALKER

#	Article	IF	CITATIONS
37	Expression of multiple type 1 phosphoprotein phosphatases in Arabidopsis thaliana. Plant Molecular Biology, 1993, 21, 307-316.	3.9	52
38	Isolation and Expression of a Maize Type 1 Protein Phosphatase. Plant Physiology, 1991, 97, 677-683.	4.8	51
39	Identification of a maize nucleic acid-binding protein (NBP) belonging to a family of nuclear-encoded chloroplast proteins. Nucleic Acids Research, 1992, 20, 359-364.	14.5	50
40	The Protein Phosphatases and Protein Kinases of Arabidopsis thaliana. The Arabidopsis Book, 2007, 5, e0106.	0.5	48
41	Phosphoprotein and Phosphopeptide Interactions with the FHA Domain from Arabidopsis Kinase-Associated Protein Phosphataseâ€. Biochemistry, 2007, 46, 2684-2696.	2.5	48
42	Isolation of an Arabidopsis thaliana casein kinase II ? subunit by complementation in Saccharomyces cerevisiae. Plant Molecular Biology, 1994, 25, 649-658.	3.9	45
43	Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genetics, 2017, 13, e1007132.	3.5	44
44	NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11261-11266.	7.1	43
45	PLANT SCIENCES: Self-Rejectiona New Kinase Connection. Science, 2004, 303, 1474-1475.	12.6	40
46	Functional genomics of protein kinases in plants. Briefings in Functional Genomics & Proteomics, 2005, 3, 362-371.	3.8	39
47	Molecular cloning of two novel protein kinase genes from Arabidopsis thaliana. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 9-14.	2.4	36
48	Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence. Plant Science, 2019, 284, 25-29.	3.6	35
49	Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission. PLoS ONE, 2016, 11, e0147203.	2.5	26
50	Molecular cloning and chromosomal mapping of type one serine/threonine protein phosphatases in Arabidopsis thaliana. Plant Molecular Biology, 1998, 37, 471-481.	3.9	25
51	A simple in vitro method to measure autophosphorylation of protein kinases. Plant Methods, 2013, 9, 22.	4.3	23
52	DVL genes play a role in the coordination of socket cell recruitment and differentiation. Journal of Experimental Botany, 2012, 63, 1405-1412.	4.8	22
53	Structure and expression of the S locus-related genes of maize. Plant Molecular Biology, 1993, 21, 1171-1174.	3.9	18
54	Disrupting ER-associated protein degradation suppresses the abscission defect of a weak <i>hae hsl2</i> mutant in Arabidopsis. Journal of Experimental Botany, 2016, 67, 5473-5484.	4.8	18

JOHN C WALKER

#	Article	IF	CITATIONS
55	A petal breakstrength meter for Arabidopsis abscission studies. Plant Methods, 2006, 2, 2.	4.3	17
56	Overexpression of a serine carboxypeptidase increases carpel number and seed production in <i><scp>A</scp>rabidopsis thaliana</i> . Food and Energy Security, 2012, 1, 61-69.	4.3	17
57	Biochemical characterization and expression of RLK4, a receptor-like kinase from Arabidopsis thaliana. Plant Science, 1999, 142, 83-91.	3.6	12
58	Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles. Plant Signaling and Behavior, 2016, 11, e1199314.	2.4	11
59	Hypermorphic <i>SERK1</i> Mutations Function via a <i>SOBIR1</i> Pathway to Activate Floral Abscission Signaling. Plant Physiology, 2019, 180, 1219-1229.	4.8	11
60	Cloning and sequence of a chicken α-N-acetylgalactosaminidase gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 296-298.	2.4	10
61	Interactions between a NAC-Domain Transcription Factor and the Putative Small Protein Encoding DVL/ROT Gene Family. Plant Molecular Biology Reporter, 2010, 28, 162-168.	1.8	10
62	Bioinformatic Identification of Plant Peptides. Methods in Molecular Biology, 2010, 615, 375-383.	0.9	9
63	Genetic interactions between themiRNA164-CUC2regulatory module andBREVIPEDICELLUSin Arabidopsis developmental patterning. Plant Signaling and Behavior, 2009, 4, 666-668.	2.4	8
64	From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data. PLoS ONE, 2015, 10, e0125000.	2.5	7
65	A Mutant Arabidopsis Heterotrimeric G-Protein b Subunit Affects Leaf, Flower, and Fruit Development. Plant Cell, 2001, 13, 2631.	6.6	6
66	DVL Peptides Are Involved in Plant Development. , 2006, , 17-22.		6
67	Transcriptomic evidence for distinct mechanisms underlying abscission deficiency in the Arabidopsis mutants haesa/haesa-like 2 and nevershed. BMC Research Notes, 2018, 11, 754.	1.4	6
68	Chapter 37 Expression and Assay of Autophosphorylation of Recombinant Protein Kinases. Methods in Cell Biology, 1995, 49, 531-541.	1.1	5
69	1H, 13C and 15N resonance assignments of the kinase-interacting FHA domain of Arabidopsis thaliana kinase-associated protein phosphatase. Journal of Biomolecular NMR, 2003, 25, 253-254.	2.8	5
70	DVL/RTFL., 2013,, 15-19.		2
71	Chapter 36 Immunocytochemical Localization of Receptor Protein Kinases in Plants. Methods in Cell Biology, 1995, 49, 515-529.	1.1	1
72	FHA Domain of Kinase Associated Protein Phosphatase (KAPP): Interactions with PhosphoThr Peptides and a Receptor Kinase and Dynamics by NMR. FASEB Journal, 2006, 20, A465.	0.5	1

#	Article	IF	CITATIONS
73	The Leucine-Rich Repeat Receptor Protein Kinases of Arabidopsis thaliana – a Paradigm for Plant LRR Receptors. , 2010, , 601-608.		Ο
74	The Leucine-Rich Repeat Receptor Protein Kinases of Arabidopsis thaliana: A Paradigm for Plant LRR Receptors. , 2003, , 579-582.		0
75	Structure and function of the receptor-like protein kinases of higher plants. , 1994, , 363-373.		0
76	ZmPK1., 1995,, 342-343.		0