List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337610/publications.pdf Version: 2024-02-01

RENTE KIENS

#	Article	IF	CITATIONS
1	Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise. Cell Metabolism, 2018, 27, 237-251.e4.	16.2	426
2	Skeletal Muscle Lipid Metabolism in Exercise and Insulin Resistance. Physiological Reviews, 2006, 86, 205-243.	28.8	392
3	lsoformâ€specific and exercise intensityâ€dependent activation of 5′â€AMPâ€activated protein kinase in hum skeletal muscle. Journal of Physiology, 2000, 528, 221-226.	an 2.9	378
4	Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training Journal of Physiology, 1993, 469, 459-478.	2.9	362
5	AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16092-16097.	7.1	357
6	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	16.2	333
7	Effect of exercise on insulin action in human skeletal muscle. Journal of Applied Physiology, 1989, 66, 876-885.	2.5	326
8	Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes, 2000, 49, 325-331.	0.6	321
9	Carbohydrates and fat for training and recovery. Journal of Sports Sciences, 2004, 22, 15-30.	2.0	316
10	Energy availability in athletes. Journal of Sports Sciences, 2011, 29, S7-S15.	2.0	308
11	Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E813-E822.	3.5	281
12	Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 2014, 116, 46-58.	1.9	261
13	Early Enhancements of Hepatic and Later of Peripheral Insulin Sensitivity Combined With Increased Postprandial Insulin Secretion Contribute to Improved Glycemic Control After Roux-en-Y Gastric Bypass. Diabetes, 2014, 63, 1725-1737.	0.6	220
14	Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E435-E447.	3.5	207
15	Ca ²⁺ –calmodulinâ€dependent protein kinase expression and signalling in skeletal muscle during exercise. Journal of Physiology, 2006, 574, 889-903.	2.9	198
16	Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle Journal of Clinical Investigation, 1989, 83, 558-564.	8.2	196
17	Gender Differences in Skeletal Muscle Substrate Metabolism ââ,¬â€œ Molecular Mechanisms and Insulin Sensitivity. Frontiers in Endocrinology, 2014, 5, 195.	3.5	182
18	Insulin Signaling in Human Skeletal Muscle: Time Course and Effect of Exercise. Diabetes, 1997, 46, 1775-1781.	0.6	179

#	Article	IF	CITATIONS
19	Myocellular triacylglycerol breakdown in females but not in males during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E634-E642.	3.5	179
20	Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. Journal of Physiology, 2000, 529, 837-847.	2.9	174
21	Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. Journal of Physiology, 2006, 574, 125-138.	2.9	167
22	Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E332-E337.	3.5	165
23	Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. American Journal of Clinical Nutrition, 1996, 63, 47-53.	4.7	163
24	Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action Journal of Clinical Investigation, 1989, 84, 1124-1129.	8.2	163
25	Effects of Endurance Exercise Training on Insulin Signaling in Human Skeletal Muscle. Diabetes, 2007, 56, 2093-2102.	0.6	162
26	Rac1 Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle. Diabetes, 2013, 62, 1865-1875.	0.6	159
27	Caffeine-Induced Impairment of Insulin Action but Not Insulin Signaling in Human Skeletal Muscle Is Reduced by Exercise. Diabetes, 2002, 51, 583-590.	0.6	148
28	Increased plasma HDLâ€cholesterol and apo Aâ€1 in sedentary middleâ€aged men after physical conditioning. European Journal of Clinical Investigation, 1980, 10, 203-209.	3.4	145
29	Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia?. American Journal of Physiology - Heart and Circulatory Physiology, 1986, 251, H1038-H1044.	3.2	145
30	Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E133-E142.	3.5	143
31	Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. Journal of Physiology, 2001, 537, 1009-1020.	2.9	140
32	Interaction of training and diet on metabolism and endurance during exercise in man Journal of Physiology, 1996, 492, 293-306.	2.9	138
33	A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. Journal of Clinical Investigation, 2016, 126, 3263-3278.	8.2	138
34	Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. American Journal of Physiology - Endocrinology and Metabolism, 1992, 262, E791-E799.	3.5	136
35	Lipoprotein lipase activity and intramuscular triglyceride stores after longâ€ŧerm highâ€fat and high arbohydrate diets in physically trained men. Clinical Physiology, 1987, 7, 1-9.	0.7	129
36	Membrane Associated Fatty Acid Binding Protein (FABPpm) in Human Skeletal Muscle Is Increased by Endurance Training. Biochemical and Biophysical Research Communications, 1997, 231, 463-465.	2.1	129

#	Article	IF	CITATIONS
37	pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell, 2020, 183, 62-75.e17.	28.9	129
38	Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. Journal of Applied Physiology, 2004, 97, 1209-1218.	2.5	122
39	Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes, 2017, 66, 1501-1510.	0.6	120
40	Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes, 2000, 49, 1295-1300.	0.6	113
41	Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E445-E453.	3.5	112
42	Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle. Diabetologia, 2009, 52, 891-900.	6.3	109
43	Exercise increases circulating GDF15 in humans. Molecular Metabolism, 2018, 9, 187-191.	6.5	109
44	Lipid-Induced Insulin Resistance Affects Women Less Than Men and Is Not Accompanied by Inflammation or Impaired Proximal Insulin Signaling. Diabetes, 2011, 60, 64-73.	0.6	106
45	Influence of active muscle mass on glucose homeostasis during exercise in humans. Journal of Applied Physiology, 1991, 71, 552-557.	2.5	103
46	Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends in Endocrinology and Metabolism, 2018, 29, 18-30.	7.1	100
47	An exercise-inducible metabolite that suppresses feeding and obesity. Nature, 2022, 606, 785-790.	27.8	96
48	Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Molecular Metabolism, 2017, 6, 22-29.	6.5	95
49	Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle–Signaling Interaction at the Level of TBC1 Domain Family Member 4. Diabetes, 2012, 61, 2743-2752.	0.6	92
50	Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1106-E1114.	3.5	90
51	Regulation of hormone-sensitive lipase activity and Ser563and Ser565phosphorylation in human skeletal muscle during exercise. Journal of Physiology, 2004, 560, 551-562.	2.9	80
52	Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nature Communications, 2021, 12, 304.	12.8	79
53	Eccentric exercise decreases maximal insulin action in humans: muscle and systemic effects Journal of Physiology, 1996, 494, 891-898.	2.9	78
54	Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. Journal of Physiology, 2016, 594, 745-761.	2.9	78

#	Article	IF	CITATIONS
55	Regulation of Glycogen Synthase Kinase-3 in Human Skeletal Muscle: Effects of Food Intake and Bicycle Exercise. Diabetes, 2001, 50, 265-269.	0.6	76
56	Hepatic Insulin Clearance in Regulation of Systemic Insulin Concentrations—Role of Carbohydrate and Energy Availability. Diabetes, 2018, 67, 2129-2136.	0.6	74
57	Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nature Reviews Endocrinology, 2020, 16, 683-696.	9.6	74
58	A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H450-H458.	3.2	71
59	Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nature Communications, 2020, 11, 2894.	12.8	71
60	Insulin action in human thighs after one-legged immobilization. Journal of Applied Physiology, 1989, 67, 19-23.	2.5	70
61	Impact of a fat-rich diet on endurance in man: role of the dietary period. Medicine and Science in Sports and Exercise, 1998, 30, 456-461.	0.4	70
62	Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nature Communications, 2021, 12, 1041.	12.8	69
63	Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular Metabolism, 2014, 3, 630-641.	6.5	68
64	AMPKα is critical for enhancing skeletal muscle fatty acid utilization during <i>in vivo</i> exercise in mice. FASEB Journal, 2015, 29, 1725-1738.	0.5	68
65	Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent. Journal of Lipid Research, 2011, 52, 699-711.	4.2	67
66	LKB1 Regulates Lipid Oxidation During Exercise Independently of AMPK. Diabetes, 2013, 62, 1490-1499.	0.6	66
67	Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. Journal of Applied Physiology, 2000, 89, 1151-1158.	2.5	62
68	Higher intramuscular triacylglycerol in women does not impair insulin sensitivity and proximal insulin signaling. Journal of Applied Physiology, 2009, 107, 824-831.	2.5	62
69	Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cellular Signalling, 2016, 28, 663-674.	3.6	62
70	Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Molecular Metabolism, 2018, 16, 24-34.	6.5	58
71	Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Molecular and Cellular Proteomics, 2017, 16, 2055-2068.	3.8	56
72	Fatty Acid Transporters (FABPpm, FAT, FATP) in Human Muscle. Applied Physiology, Nutrition, and Metabolism, 1999, 24, 515-523.	1.7	55

#	Article	IF	CITATIONS
73	Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Molecular Metabolism, 2017, 6, 873-881.	6.5	54
74	Enhanced Fatty Acid Oxidation and FATP4 Protein Expression after Endurance Exercise Training in Human Skeletal Muscle. PLoS ONE, 2012, 7, e29391.	2.5	52
75	GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E355-E362.	3.5	51
76	Molecular Mechanisms in Skeletal Muscle Underlying Insulin Resistance in Women Who Are Lean With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1841-1854.	3.6	50
77	Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metabolism, 2019, 29, 50-63.e4.	16.2	50
78	Opposite Regulation of Insulin Sensitivity by Dietary Lipid Versus Carbohydrate Excess. Diabetes, 2017, 66, 2583-2595.	0.6	46
79	mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 2016, 5, 646-655.	6.5	44
80	Personalized phosphoproteomics identifies functional signaling. Nature Biotechnology, 2022, 40, 576-584.	17.5	44
81	Analysis of the liver lipidome reveals insights into the protective effect of exercise on high-fat diet-induced hepatosteatosis in mice. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E778-E791.	3.5	43
82	Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R510-R524.	1.8	42
83	Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle. Proceedings of the Nutrition Society, 2004, 63, 239-244.	1.0	41
84	Exercise training reduces the insulinâ€sensitizing effect of a single bout of exercise in human skeletal muscle. Journal of Physiology, 2019, 597, 89-103.	2.9	41
85	FFAR4 (GPR120) Signaling Is Not Required for Anti-Inflammatory and Insulin-Sensitizing Effects of Omega-3 Fatty Acids. Mediators of Inflammation, 2016, 2016, 1-12.	3.0	40
86	FGF21 does not require adipocyte AMP-activated protein kinase (AMPK) or the phosphorylation of acetyl-CoA carboxylase (ACC) to mediate improvements in whole-body glucose homeostasis. Molecular Metabolism, 2017, 6, 471-481.	6.5	40
87	5′â€AMP activated protein kinase α ₂ controls substrate metabolism during postâ€exercise recovery via regulation of pyruvate dehydrogenase kinaseÂ4. Journal of Physiology, 2015, 593, 4765-4780.	2.9	39
88	New Nordic Diet–Induced Weight Loss Is Accompanied by Changes in Metabolism and AMPK Signaling in Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3509-3519.	3.6	39
89	Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C and interacts with insulin signalling to peptide elongation in human skeletal muscle. Journal of Physiology, 2007, 582, 1289-1301.	2.9	37
90	Nearâ€normalization of glycaemic control with glucagonâ€like peptideâ€1 receptor agonist treatment combined with exercise in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2017, 19, 172-180.	4.4	36

#	Article	IF	CITATIONS
91	Insulinâ€induced membrane permeability to glucose in human muscles at rest and following exercise. Journal of Physiology, 2020, 598, 303-315.	2.9	35
92	Factors regulating fat oxidation in human skeletal muscle. Obesity Reviews, 2011, 12, 852-858.	6.5	34
93	Contractionâ€induced lipolysis is not impaired by inhibition of hormoneâ€sensitive lipase in skeletal muscle. Journal of Physiology, 2013, 591, 5141-5155.	2.9	33
94	Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women. Journal of Applied Physiology, 2013, 114, 592-601.	2.5	32
95	Regulation of exerciseâ€induced lipid metabolism in skeletal muscle. Experimental Physiology, 2014, 99, 1586-1592.	2.0	31
96	The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery. Nutrients, 2020, 12, 280.	4.1	29
97	Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Molecular Metabolism, 2020, 39, 100998.	6.5	29
98	FAT/CD36 is localized in sarcolemma and in vesicle-like structures in subsarcolemma regions but not in mitochondria. Journal of Lipid Research, 2010, 51, 1504-1512.	4.2	28
99	AMPK and Insulin Action - Responses to Ageing and High Fat Diet. PLoS ONE, 2013, 8, e62338.	2.5	28
100	Endurance in high-fat-fed rats: effects of carbohydrate content and fatty acid profile. Journal of Applied Physiology, 1998, 85, 1342-1348.	2.5	26
101	Effect of bariatric surgery on plasma GDF15 in humans. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E615-E621.	3.5	25
102	Thyroid hormone receptor α in skeletal muscle is essential for T3â€mediated increase in energy expenditure. FASEB Journal, 2020, 34, 15480-15491.	0.5	25
103	ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Molecular Metabolism, 2020, 35, 100949.	6.5	25
104	Dietary Fuels in Athletic Performance. Annual Review of Nutrition, 2019, 39, 45-73.	10.1	23
105	Glucometabolic consequences of acute and prolonged inhibition of fatty acid oxidation. Journal of Lipid Research, 2020, 61, 10-19.	4.2	23
106	Quantification of exerciseâ€regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation. FASEB Journal, 2020, 34, 5906-5916.	0.5	23
107	Dietary fat drives whole-body insulin resistance and promotes intestinal inflammation independent of body weight gain. Metabolism: Clinical and Experimental, 2016, 65, 1706-1719.	3.4	22
108	Human Paneth cell α-defensin-5 treatment reverses dyslipidemia and improves glucoregulatory capacity in diet-induced obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E42-E52.	3.5	22

#	Article	IF	CITATIONS
109	Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion. Metabolism: Clinical and Experimental, 2020, 105, 154169.	3.4	22
110	Effect of high-fat diets on exercise performance. Proceedings of the Nutrition Society, 1998, 57, 73-75.	1.0	21
111	A Single Bout of One-Legged Exercise to Local Exhaustion Decreases Insulin Action in Nonexercised Muscle Leading to Decreased Whole-Body Insulin Action. Diabetes, 2020, 69, 578-590.	0.6	21
112	Differential effects of glucagonâ€like peptideâ€1 on microvascular recruitment and glucose metabolism in short―and longâ€ŧerm insulin resistance. Journal of Physiology, 2015, 593, 2185-2198.	2.9	20
113	Adaptations in Mitochondrial Enzymatic Activity Occurs Independent of Genomic Dosage in Response to Aerobic Exercise Training and Deconditioning in Human Skeletal Muscle. Cells, 2019, 8, 237.	4.1	20
114	ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes, 2019, 68, 502-514.	0.6	20
115	Glycogen concentration in human skeletal muscle: effect of prolonged insulin and glucose infusion. Scandinavian Journal of Medicine and Science in Sports, 1999, 9, 209-213.	2.9	19
116	Partial Disruption of Lipolysis Increases Postexercise Insulin Sensitivity in Skeletal Muscle Despite Accumulation of DAG. Diabetes, 2016, 65, 2932-2942.	0.6	19
117	Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes, 2021, 70, 91-98.	0.6	18
118	Partial restoration of dietary fat induced metabolic adaptations to training by 7 days of carbohydrate diet. Journal of Applied Physiology, 2002, 93, 1797-1805.	2.5	16
119	Utilization of longâ€chain fatty acids in human skeletal muscle during exercise. Acta Physiologica Scandinavica, 2003, 178, 391-396.	2.2	13
120	Suboptimal Nutrition and Low Physical Activity Are Observed Together with Reduced Plasma Brain-Derived Neurotrophic Factor (BDNF) Concentration in Children with Severe Cerebral Palsy (CP). Nutrients, 2019, 11, 620.	4.1	13
121	Mechanisms Underlying Absent Training-Induced Improvement in Insulin Action in Lean, Hyperandrogenic Women With Polycystic Ovary Syndrome. Diabetes, 2020, 69, 2267-2280.	0.6	13
122	The insulinâ€sensitizing effect of a single exercise bout is similar in type I and type II human muscle fibres. Journal of Physiology, 2020, 598, 5687-5699.	2.9	13
123	Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma. Molecular and Cellular Biochemistry, 2009, 326, 45-53.	3.1	12
124	Nutritional optimization for female elite football players—topical review. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 81-104.	2.9	12
125	Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle: effect of a 3-day, high-fat diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1136-R1145.	1.8	11
126	Hypothalamic hormone-sensitive lipase regulates appetite and energy homeostasis. Molecular Metabolism, 2021, 47, 101174.	6.5	11

#	ARTICLE	IF	CITATIONS
127	Pharmacological targeting of α3β4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	6.3	9
128	The Role of Hepatic Fat Accumulation in Glucose and Insulin Homeostasis—Dysregulation by the Liver. Journal of Clinical Medicine, 2021, 10, 390.	2.4	8
129	Ketogenic Diets for Fat Loss and Exercise Performance. Exercise and Sport Sciences Reviews, 2015, 43, 109.	3.0	6
130	Effects of Short-Term Dietary Protein Restriction on Blood Amino Acid Levels in Young Men. Nutrients, 2020, 12, 2195.	4.1	5
131	Fatty acid type–specific regulation of SIRT1 does not affect insulin sensitivity in human skeletal muscle. FASEB Journal, 2019, 33, 5510-5519.	0.5	4
132	Exercise increases phosphorylation of the putative mTORC2 activity readout NDRG1 in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E63-E73.	3.5	4
133	Exercise physiology: From performance studies to muscle physiology and cardiovascular adaptations. Journal of Applied Physiology, 2014, 117, 943-944.	2.5	2
134	Supplementation of docosahexaenoic acid (DHA), vitamin D3 and uridine in combination with six weeks of cognitive and motor training in prepubescent children: a pilot study. BMC Nutrition, 2017, 3, 37.	1.6	1
135	Response to Comment on: Hoeg et al. Lipid-Induced Insulin Resistance Affects Women Less Than Men and Is Not Accompanied by Inflammation or Impaired Proximal Insulin Signaling. Diabetes 2011;60:64-73. Diabetes, 2011, 60, e24-e24.	0.6	0
136	Hormone Sensitive Lipase knockout mice have higher Post Exercise Insulin Sensitivity despite accumulation of diacylglycerol. FASEB Journal, 2013, 27, .	0.5	0