List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375695/publications.pdf Version: 2024-02-01

MADE A LEVED

#	Article	IF	CITATIONS
1	Ancient and Modern Geochemical Signatures in the 13,500-Year Sedimentary Record of Lake Cadagno. Frontiers in Earth Science, 2022, 9, .	1.8	7
2	Microbial Nitrogen Transformation Potential in Sediments of Two Contrasting Lakes Is Spatially Structured but Seasonally Stable. MSphere, 2022, 7, e0101321.	2.9	10
3	Redox Zone and Trophic State as Drivers of Methane-Oxidizing Bacterial Abundance and Community Structure in Lake Sediments. Frontiers in Environmental Science, 2022, 10, .	3.3	4
4	Long-term preservation of biomolecules in lake sediments: potential importance of physical shielding by recalcitrant cell walls. , 2022, 1, .		4
5	Effects of Macrofaunal Recolonization on Biogeochemical Processes and Microbiota—A Mesocosm Study. Water (Switzerland), 2021, 13, 1599.	2.7	4
6	Carbon sources of benthic fauna in temperate lakes across multiple trophic states. Biogeosciences, 2021, 18, 4369-4388.	3.3	7
7	Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment. Communications Biology, 2021, 4, 1006.	4.4	10
8	Improving the extraction efficiency of sedimentary carbohydrates by sequential hydrolysis. Organic Geochemistry, 2020, 141, 103963.	1.8	7
9	Eutrophication as a driver of microbial community structure in lake sediments. Environmental Microbiology, 2020, 22, 3446-3462.	3.8	51
10	Macrofaunal control of microbial community structure in continental margin sediments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15911-15922.	7.1	40
11	Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes. Biogeosciences, 2019, 16, 3725-3746.	3.3	26
12	Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Frontiers in Microbiology, 2019, 10, 1729.	3.5	11
13	Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils. Environmental Science & Technology, 2019, 53, 3027-3036.	10.0	89
14	The Limits of Life and the Biosphere in Earth's Interior. Oceanography, 2019, 32, 208-211.	1.0	10
15	Marine Transform Faults and Fracture Zones: A Joint Perspective Integrating Seismicity, Fluid Flow and Life. Frontiers in Earth Science, 2019, 7, .	1.8	46
16	Experimental calibration of clumped isotopes in siderite between 8.5 and 62â€ [−] °C and its application as paleo-thermometer in paleosols. Geochimica Et Cosmochimica Acta, 2019, 254, 1-20.	3.9	19
17	Improving the Accuracy of Flow Cytometric Quantification of Microbial Populations in Sediments: Importance of Cell Staining Procedures. Frontiers in Microbiology, 2019, 10, 720.	3.5	11
18	Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiology Ecology, 2018, 94, .	2.7	79

#	Article	IF	CITATIONS
19	Oxygen isotope fractionation in the siderite-water system between 8.5 and 62â€ [–] °C. Geochimica Et Cosmochimica Acta, 2018, 220, 535-551.	3.9	17
20	D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin. Frontiers in Microbiology, 2018, 9, 967.	3.5	23
21	On the formation of hydrothermal vents and cold seeps in the Guaymas Basin, Gulf of California. Biogeosciences, 2018, 15, 5715-5731.	3.3	25
22	Preservation of microbial DNA in marine sediments: insights from extracellular DNA pools. Environmental Microbiology, 2018, 20, 4526-4542.	3.8	48
23	Oxidation of Reduced Peat Particulate Organic Matter by Dissolved Oxygen: Quantification of Apparent Rate Constants in the Field. Environmental Science & Technology, 2018, 52, 11151-11160.	10.0	14
24	Growth of sedimentary <i>Bathyarchaeota</i> on lignin as an energy source. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6022-6027.	7.1	165
25	Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex. Science Advances, 2018, 4, eaao4631.	10.3	79
26	Microbial community assembly and evolution in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2940-2945.	7.1	194
27	Exploration of cultivable fungal communities in deep coalâ€bearing sediments from â^¼1.3 to 2.5 km below the ocean floor. Environmental Microbiology, 2017, 19, 803-818.	3.8	52
28	Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay. Applied and Environmental Microbiology, 2017, 83, .	3.1	53
29	Bioturbation as a key driver behind the dominance of Bacteria over Archaea in near-surface sediment. Scientific Reports, 2017, 7, 2400.	3.3	73
30	Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments. Marine Chemistry, 2017, 196, 35-46.	2.3	35
31	Size and composition of subseafloor microbial community in the Benguela upwelling area examined from intact membrane lipid and DNA analysis. Organic Geochemistry, 2017, 111, 86-100.	1.8	19
32	Influence of Igneous Basement on Deep Sediment Microbial Diversity on the Eastern Juan de Fuca Ridge Flank. Frontiers in Microbiology, 2017, 8, 1434.	3.5	52
33	In Chaotropy Lies Opportunity. Frontiers in Microbiology, 2016, 6, 1505.	3.5	2
34	The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation. Frontiers in Microbiology, 2016, 7, 75.	3.5	82
35	Rifting under steam—How rift magmatism triggers methane venting from sedimentary basins. Geology, 2016, 44, 767-770.	4.4	59
36	Endospores, prokaryotes, and microbial indicators in arable soils from three long-term experiments. Biology and Fertility of Soils, 2016, 52, 101-112.	4.3	10

#	Article	IF	CITATIONS
37	A New Era of Methanogenesis Research. Trends in Microbiology, 2016, 24, 84-86.	7.7	34
38	A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology, 2015, 6, 476.	3.5	247
39	Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?. Frontiers in Microbiology, 2015, 6, 492.	3.5	107
40	Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiology Reviews, 2015, 39, 688-728.	8.6	288
41	Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Marine Genomics, 2015, 24, 185-196.	1.1	255
42	Ammoniaâ€oxidizing B acteria of the N itrosospira cluster 1 dominate over ammoniaâ€oxidizing A rchaea in oligotrophic surface sediments near the S outh A tlantic G yre. Environmental Microbiology Reports, 2015, 7, 404-413.	2.4	22
43	Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 2015, 349, 420-424.	12.6	376
44	Uncultured <scp><i>D</i></scp> <i>esulfobacteraceae</i> and <scp>C</scp> renarchaeotal group <scp>C</scp> 3 incorporate ¹³ <scp>C</scp> â€acetate in coastal marine sediment. Environmental Microbiology Reports, 2015, 7, 614-622.	2.4	51
45	Diversity of Methane-Cycling Archaea in Hydrothermal Sediment Investigated by General and Group-Specific PCR Primers. Applied and Environmental Microbiology, 2015, 81, 1426-1441.	3.1	79
46	2. Life in the Oceanic Crust. , 2014, , 29-62.		4
47	Genetic Evidence of Subseafloor Microbial Communities. Developments in Marine Geology, 2014, 7, 85-125.	0.4	8
48	Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis. Ecotoxicology, 2014, 23, 404-418.	2.4	9
49	Predominant archaea in marine sediments degrade detrital proteins. Nature, 2013, 496, 215-218.	27.8	526
50	Functional gene surveys from ocean drilling expeditions - a review and perspective. FEMS Microbiology Ecology, 2013, 84, 1-23.	2.7	49
51	Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt. Science, 2013, 339, 1305-1308.	12.6	210
52	Endospore abundance and d:l-amino acid modeling of bacterial turnover in holocene marine sediment (Aarhus Bay). Geochimica Et Cosmochimica Acta, 2012, 99, 87-99.	3.9	72
53	Niche Separation of Methanotrophic Archaea (ANME-1 and -2) in Methane-Seep Sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiology Journal, 2011, 28, 118-129.	2.0	61
54	Acetogenesis in the Energy-Starved Deep Biosphere – A Paradox?. Frontiers in Microbiology, 2011, 2, 284.	3.5	127

#	Article	IF	CITATIONS
55	Acetogenesis in Deep Subseafloor Sediments of The Juan de Fuca Ridge Flank: A Synthesis of Geochemical, Thermodynamic, and Gene-based Evidence. Geomicrobiology Journal, 2010, 27, 183-211.	2.0	89
56	Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2745-2752.	1.7	64
57	Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geoscience, 2009, 2, 349-354.	12.9	111
58	Fluids from the Oceanic Crust Support Microbial Activities within the Deep Biosphere. Geomicrobiology Journal, 2008, 25, 56-66.	2.0	96
59	Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2815-2820.	7.1	644
60	Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3846-3851.	7.1	654
61	Trends in Basalt and Sediment Core Contamination During IODP Expedition 301. Geomicrobiology Journal, 2006, 23, 517-530.	2.0	119
62	Microbial Community in Black Rust Exposed to Hot Ridge Flank Crustal Fluids. Applied and Environmental Microbiology, 2006, 72, 6789-6799.	3.1	86
63	Methanogen Diversity Evidenced by Molecular Characterization of Methyl Coenzyme M Reductase A () Tj ETQq1 1 Microbiology, 2005, 71, 4592-4601.	0.784314 3.1	4 rgBT /Ove 152
64	Response of microphytobenthic biomass to experimental nutrient enrichment and grazer exclusion at different land-derived nitrogen loads. Marine Ecology - Progress Series, 2005, 294, 117-129.	1.9	32
65	Top-down vs. Bottom-up Controls of Microphytobenthic Standing Crop: Role of Mud Snails and Nitrogen Supply in the Littoral of Waquoit Bay Estuaries. Biological Bulletin, 2001, 201, 292-294.	1.8	12