Mark A. Lever

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375695/publications.pdf

Version: 2024-02-01

65 papers

6,025 citations

36 h-index 63 g-index

70 all docs

70 docs citations

70 times ranked

5585 citing authors

#	Article	IF	CITATIONS
1	Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3846-3851.	7.1	654
2	Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2815-2820.	7.1	644
3	Predominant archaea in marine sediments degrade detrital proteins. Nature, 2013, 496, 215-218.	27.8	526
4	Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 2015, 349, 420-424.	12.6	376
5	Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiology Reviews, 2015, 39, 688-728.	8.6	288
6	Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Marine Genomics, 2015, 24, 185-196.	1.1	255
7	A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology, 2015, 6, 476.	3.5	247
8	Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt. Science, 2013, 339, 1305-1308.	12.6	210
9	Microbial community assembly and evolution in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2940-2945.	7.1	194
10	Growth of sedimentary <i>Bathyarchaeota</i> on lignin as an energy source. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6022-6027.	7.1	165
11	Methanogen Diversity Evidenced by Molecular Characterization of Methyl Coenzyme M Reductase A () Tj ETQq1 1 Microbiology, 2005, 71, 4592-4601.	1 0.784314 3.1	4 rgBT /Over 152
12	Acetogenesis in the Energy-Starved Deep Biosphere – A Paradox?. Frontiers in Microbiology, 2011, 2, 284.	3.5	127
13	Trends in Basalt and Sediment Core Contamination During IODP Expedition 301. Geomicrobiology Journal, 2006, 23, 517-530.	2.0	119
14	Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geoscience, 2009, 2, 349-354.	12.9	111
15	Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?. Frontiers in Microbiology, 2015, 6, 492.	3.5	107
16	Fluids from the Oceanic Crust Support Microbial Activities within the Deep Biosphere. Geomicrobiology Journal, 2008, 25, 56-66.	2.0	96
17	Acetogenesis in Deep Subseafloor Sediments of The Juan de Fuca Ridge Flank: A Synthesis of Geochemical, Thermodynamic, and Gene-based Evidence. Geomicrobiology Journal, 2010, 27, 183-211.	2.0	89
18	Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils. Environmental Science & Environmental Science & 2019, 53, 3027-3036.	10.0	89

#	Article	IF	Citations
19	Microbial Community in Black Rust Exposed to Hot Ridge Flank Crustal Fluids. Applied and Environmental Microbiology, 2006, 72, 6789-6799.	3.1	86
20	The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation. Frontiers in Microbiology, 2016, 7, 75.	3.5	82
21	Diversity of Methane-Cycling Archaea in Hydrothermal Sediment Investigated by General and Group-Specific PCR Primers. Applied and Environmental Microbiology, 2015, 81, 1426-1441.	3.1	79
22	Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiology Ecology, 2018, 94, .	2.7	79
23	Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex. Science Advances, 2018, 4, eaao4631.	10.3	79
24	Bioturbation as a key driver behind the dominance of Bacteria over Archaea in near-surface sediment. Scientific Reports, 2017, 7, 2400.	3.3	73
25	Endospore abundance and d:l-amino acid modeling of bacterial turnover in holocene marine sediment (Aarhus Bay). Geochimica Et Cosmochimica Acta, 2012, 99, 87-99.	3.9	72
26	Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2745-2752.	1.7	64
27	Niche Separation of Methanotrophic Archaea (ANME-1 and -2) in Methane-Seep Sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiology Journal, 2011, 28, 118-129.	2.0	61
28	Rifting under steamâ€"How rift magmatism triggers methane venting from sedimentary basins. Geology, 2016, 44, 767-770.	4.4	59
29	Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay. Applied and Environmental Microbiology, 2017, 83, .	3.1	53
30	Exploration of cultivable fungal communities in deep coalâ€bearing sediments from â^1⁄41.3 to 2.5 km below the ocean floor. Environmental Microbiology, 2017, 19, 803-818.	3.8	52
31	Influence of Igneous Basement on Deep Sediment Microbial Diversity on the Eastern Juan de Fuca Ridge Flank. Frontiers in Microbiology, 2017, 8, 1434.	3.5	52
32	Uncultured <scp><i>D</i></scp> <i>esulfobacteraceae</i> and <scp>C</scp> renarchaeotal group <scp>C</scp> 3 incorporate ¹³ <scp>C</scp> â€acetate in coastal marine sediment. Environmental Microbiology Reports, 2015, 7, 614-622.	2.4	51
33	Eutrophication as a driver of microbial community structure in lake sediments. Environmental Microbiology, 2020, 22, 3446-3462.	3.8	51
34	Functional gene surveys from ocean drilling expeditions - a review and perspective. FEMS Microbiology Ecology, 2013, 84, 1-23.	2.7	49
35	Preservation of microbial DNA in marine sediments: insights from extracellular DNA pools. Environmental Microbiology, 2018, 20, 4526-4542.	3.8	48
36	Marine Transform Faults and Fracture Zones: A Joint Perspective Integrating Seismicity, Fluid Flow and Life. Frontiers in Earth Science, 2019, 7, .	1.8	46

#	Article	IF	Citations
37	Macrofaunal control of microbial community structure in continental margin sediments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15911-15922.	7.1	40
38	Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments. Marine Chemistry, 2017, 196, 35-46.	2.3	35
39	A New Era of Methanogenesis Research. Trends in Microbiology, 2016, 24, 84-86.	7.7	34
40	Response of microphytobenthic biomass to experimental nutrient enrichment and grazer exclusion at different land-derived nitrogen loads. Marine Ecology - Progress Series, 2005, 294, 117-129.	1.9	32
41	Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes. Biogeosciences, 2019, 16, 3725-3746.	3.3	26
42	On the formation of hydrothermal vents and cold seeps in the Guaymas Basin, Gulf of California. Biogeosciences, 2018, 15, 5715-5731.	3.3	25
43	D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin. Frontiers in Microbiology, 2018, 9, 967.	3.5	23
44	Ammoniaâ€oxidizing B acteria of the N itrosospira cluster 1 dominate over ammoniaâ€oxidizing A rchaea in oligotrophic surface sediments near the S outh A tlantic G yre. Environmental Microbiology Reports, 2015, 7, 404-413.	2.4	22
45	Size and composition of subseafloor microbial community in the Benguela upwelling area examined from intact membrane lipid and DNA analysis. Organic Geochemistry, 2017, 111, 86-100.	1.8	19
46	Experimental calibration of clumped isotopes in siderite between 8.5 and 62â€Â°C and its application as paleo-thermometer in paleosols. Geochimica Et Cosmochimica Acta, 2019, 254, 1-20.	3.9	19
47	Oxygen isotope fractionation in the siderite-water system between 8.5 and 62 °C. Geochimica Et Cosmochimica Acta, 2018, 220, 535-551.	3.9	17
48	Oxidation of Reduced Peat Particulate Organic Matter by Dissolved Oxygen: Quantification of Apparent Rate Constants in the Field. Environmental Science & Echnology, 2018, 52, 11151-11160.	10.0	14
49	Top-down vs. Bottom-up Controls of Microphytobenthic Standing Crop: Role of Mud Snails and Nitrogen Supply in the Littoral of Waquoit Bay Estuaries. Biological Bulletin, 2001, 201, 292-294.	1.8	12
50	Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Frontiers in Microbiology, 2019, 10, 1729.	3.5	11
51	Improving the Accuracy of Flow Cytometric Quantification of Microbial Populations in Sediments: Importance of Cell Staining Procedures. Frontiers in Microbiology, 2019, 10, 720.	3.5	11
52	Endospores, prokaryotes, and microbial indicators in arable soils from three long-term experiments. Biology and Fertility of Soils, 2016, 52, 101-112.	4.3	10
53	The Limits of Life and the Biosphere in Earth's Interior. Oceanography, 2019, 32, 208-211.	1.0	10
54	Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment. Communications Biology, 2021, 4, 1006.	4.4	10

#	Article	IF	CITATIONS
55	Microbial Nitrogen Transformation Potential in Sediments of Two Contrasting Lakes Is Spatially Structured but Seasonally Stable. MSphere, 2022, 7, e0101321.	2.9	10
56	Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis. Ecotoxicology, 2014, 23, 404-418.	2.4	9
57	Genetic Evidence of Subseafloor Microbial Communities. Developments in Marine Geology, 2014, 7, 85-125.	0.4	8
58	Improving the extraction efficiency of sedimentary carbohydrates by sequential hydrolysis. Organic Geochemistry, 2020, 141, 103963.	1.8	7
59	Carbon sources of benthic fauna in temperate lakes across multiple trophic states. Biogeosciences, 2021, 18, 4369-4388.	3. 3	7
60	Ancient and Modern Geochemical Signatures in the 13,500-Year Sedimentary Record of Lake Cadagno. Frontiers in Earth Science, 2022, 9, .	1.8	7
61	2. Life in the Oceanic Crust. , 2014, , 29-62.		4
62	Effects of Macrofaunal Recolonization on Biogeochemical Processes and Microbiota—A Mesocosm Study. Water (Switzerland), 2021, 13, 1599.	2.7	4
63	Redox Zone and Trophic State as Drivers of Methane-Oxidizing Bacterial Abundance and Community Structure in Lake Sediments. Frontiers in Environmental Science, 2022, 10, .	3.3	4
64	Long-term preservation of biomolecules in lake sediments: potential importance of physical shielding by recalcitrant cell walls. , 2022, 1 , .		4
65	In Chaotropy Lies Opportunity. Frontiers in Microbiology, 2016, 6, 1505.	3 . 5	2