Sangwoon Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Nanoparticle Size on Plasmon-Driven Reaction Efficiency. ACS Applied Materials & Interfaces, 2022, 14, 4163-4169.	8.0	14
2	Silica-Encapsulated Core–Satellite Gold Nanoparticle Assemblies as Stable, Sensitive, and Multiplex Surface-Enhanced Raman Scattering Probes. ACS Applied Nano Materials, 2022, 5, 5087-5095.	5.0	6
3	On the Origin of the Plasmonic Properties of Gold Nanoparticles. Bulletin of the Korean Chemical Society, 2021, 42, 1058-1065.	1.9	10
4	Strainâ€Induced Modulation of Localized Surface Plasmon Resonance in Ultrathin Hexagonal Gold Nanoplates. Advanced Materials, 2021, 33, e2100653.	21.0	10
5	Plasmon-driven protodeboronation reactions in nanogaps. Nanoscale, 2020, 12, 24062-24069.	5.6	12
6	Plasmonic Switching: Hole Transfer Opens an Electron-Transfer Channel in Plasmon-Driven Reactions. Journal of Physical Chemistry C, 2020, 124, 15879-15885.	3.1	15
7	Formation, Stability, and Replacement of Thiol Selfâ€Assembled Monolayers as a Practical Guide to Prepare Nanogaps in Nanoparticleâ€onâ€Mirror Systems. Bulletin of the Korean Chemical Society, 2019, 40, 839-842.	1.9	6
8	Correction to "Ultrafast Excitonic Behavior in Two-Dimensional Metal–Semiconductor Heterostructure. ACS Photonics, 2019, 6, 2181-2181.	6.6	0
9	Effect of Nanogap Morphology on Plasmon Coupling. ACS Nano, 2019, 13, 12100-12108.	14.6	48
10	Colour and SERS patterning using core–satellite nanoassemblies. Chemical Communications, 2019, 55, 1466-1469.	4.1	8
11	How Does a Plasmon-Induced Hot Charge Carrier Break a C–C Bond?. ACS Applied Materials & Interfaces, 2019, 11, 24715-24724.	8.0	53
12	Ultrafast Excitonic Behavior in Two-Dimensional Metal–Semiconductor Heterostructure. ACS Photonics, 2019, 6, 1379-1386.	6.6	23
13	Flatbed-scanner-based colorimetric Cu2+ signaling system derived from a coumarin–benzopyrylium conjugated dye. Sensors and Actuators B: Chemical, 2018, 268, 22-28.	7.8	11
14	The Chemical Fluctuation Theorem governing gene expression. Nature Communications, 2018, 9, 297.	12.8	29
15	Patterning Nanogaps: Spatial Control of the Distribution of Nanogaps between Gold Nanoparticles and Gold Substrates. Journal of Physical Chemistry C, 2018, 122, 26047-26053.	3.1	6
16	Quantum Effects in Plasmon Coupling Across Subnanometer Gaps. Bulletin of the Korean Chemical Society, 2017, 38, 419-420.	1.9	1
17	Cold Nanotrimers: A Preparation Method and Optical Responses. Bulletin of the Korean Chemical Society, 2016, 37, 987-988.	1.9	3
18	Effect of Nanogap Curvature on SERS: A Finite-Difference Time-Domain Study. Journal of Physical Chemistry C, 2016, 120, 20642-20650.	3.1	54

SANGWOON YOON

#	Article	IF	CITATIONS
19	Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime. Journal of Colloid and Interface Science, 2016, 464, 18-24.	9.4	37
20	Gold Nanocube–Nanosphere Dimers: Preparation, Plasmon Coupling, and Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2015, 119, 7873-7882.	3.1	76
21	Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles. ACS Nano, 2015, 9, 12292-12300.	14.6	72
22	Influence of the molecular-scale structures of 1-dodecanethiol and 4-methylbenzenethiol self-assembled monolayers on gold nanoparticles adsorption pattern. Journal of Colloid and Interface Science, 2014, 425, 83-90.	9.4	8
23	Creating SERS hot spots on ultralong single-crystal β-AgVO ₃ microribbons. Journal of Materials Chemistry C, 2014, 2, 4051-4056.	5.5	10
24	Probing Quantum Plasmon Coupling Using Gold Nanoparticle Dimers with Tunable Interparticle Distances Down to the Subnanometer Range. ACS Nano, 2014, 8, 8554-8563.	14.6	176
25	Induced Eye-detectable Blue Emission of Triazolyl Derivatives via Selective Photodecomposition of Chloroform under UV Irradiation at 365 nm. Bulletin of the Korean Chemical Society, 2014, 35, 135-140.	1.9	7
26	Surface Modification of Citrate-Capped Gold Nanoparticles Using CTAB Micelles. Bulletin of the Korean Chemical Society, 2014, 35, 2567-2569.	1.9	23
27	Surface Plasmon Coupling of Compositionally Heterogeneous Core–Satellite Nanoassemblies. Journal of Physical Chemistry Letters, 2013, 4, 1371-1378.	4.6	71
28	Probing Interfacial Interactions Using Core–Satellite Plasmon Rulers. Langmuir, 2013, 29, 14772-14778.	3.5	37
29	Effects of the Number of Satellites on Surface Plasmon Coupling of Core-Satellite Nanoassemblies. Bulletin of the Korean Chemical Society, 2013, 34, 33-34.	1.9	5
30	Controlled Assembly and Plasmonic Properties of Asymmetric Core–Satellite Nanoassemblies. ACS Nano, 2012, 6, 7199-7208.	14.6	156
31	Photoisomerization of azobenzene derivatives confined in gold nanoparticle aggregates. Physical Chemistry Chemical Physics, 2011, 13, 12900.	2.8	33
32	Adsorption Patterns of Gold Nanoparticles on Methyl-Terminated Self-Assembled Monolayers. Journal of Physical Chemistry C, 2011, 115, 12501-12507.	3.1	14
33	Shape effect of ceria in Cu/ceria catalysts for preferential CO oxidation. Journal of Molecular Catalysis A, 2011, 335, 82-88.	4.8	83
34	Photooxidative Coupling of Thiophenol Derivatives to Disulfides. Journal of Physical Chemistry A, 2010, 114, 12010-12015.	2.5	35
35	Spatially Controlled SERS Patterning Using Photoinduced Disassembly of Gelated Gold Nanoparticle Aggregates. Langmuir, 2010, 26, 17808-17811.	3.5	6
36	Time-Dependent and Symmetry-Selective Charge-Transfer Contribution to SERS in Gold Nanoparticle Aggregates. Langmuir, 2009, 25, 12475-12480.	3.5	54

SANGWOON YOON

#	Article	IF	CITATIONS
37	FRET-derived ratiometric fluorescence sensor for Cu2+. Tetrahedron, 2008, 64, 1294-1300.	1.9	121
38	Metal Ion Induced FRET OFFâ^'ON in Tren/Dansyl-Appended Rhodamine. Organic Letters, 2008, 10, 213-216.	4.6	236
39	Femtosecond Stimulated Raman Spectroscopy. Analytical Chemistry, 2006, 78, 5952-5959.	6.5	42
40	Direct observation of the ultrafast intersystem crossing in tris(2,2′-bipyridine)ruthenium(II) using femtosecond stimulated Raman spectroscopy. Molecular Physics, 2006, 104, 1275-1282.	1.7	99
41	Vibrationally Controlled Chemistry: Mode- and Bond-Selected Reaction of CH3D with Clâ€. Journal of Physical Chemistry B, 2005, 109, 8388-8392.	2.6	64
42	Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay. Journal of Chemical Physics, 2005, 122, 024505.	3.0	47
43	Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman. Science, 2005, 310, 1006-1009.	12.6	600
44	Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods. Review of Scientific Instruments, 2004, 75, 4971-4980.	1.3	285
45	Control of bimolecular reactions: Bond-selected reaction of vibrationally excited CH3D with Cl (2P3/2). Journal of Chemical Physics, 2003, 119, 4755-4761.	3.0	64
46	The relative reactivity of CH3D molecules with excited symmetric and antisymmetric stretching vibrations. Journal of Chemical Physics, 2003, 119, 9568-9575.	3.0	87
47	The relative reactivity of the stretch–bend combination vibrations of CH4 in the Cl (2P3/2)+CH4 reaction. Journal of Chemical Physics, 2002, 116, 10744-10752.	3.0	103