Dimitrios P Nikolelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375524/publications.pdf Version: 2024-02-01

DIMITRIOS P NIKOLEUS

#	Article	IF	CITATIONS
1	Nanosensors Based on Lipid Membranes for the Rapid Detection of Food Toxicants. Environmental Chemistry for A Sustainable World, 2021, , 247-259.	0.5	0
2	Challenges and Future Prospects of Nanoadvanced Sensing Technology. , 2019, , 375-396.		1
3	Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants. , 2019, , 285-297.		Ο
4	Novel Biosensors for the Rapid Detection of Toxicants in Foods. Advances in Food and Nutrition Research, 2018, 84, 57-102.	3.0	16
5	The Application of Lipid Membranes in Biosensing. Membranes, 2018, 8, 108.	3.0	17
6	Label-Free and Redox Markers-Based Electrochemical Aptasensors for Aflatoxin M1 Detection. Sensors, 2018, 18, 4218.	3.8	32
7	Nanobiosensors Based on Graphene Electrodes: Recent Trends and Future Applications. , 2018, , 161-177.		3
8	Application of Biosensors Based on Lipid Membranes for the Rapid Detection of Toxins. Biosensors, 2018, 8, 61.	4.7	13
9	Potentiometric Biosensing Applications of Graphene Electrodes with Stabilized Polymer Lipid Membranes. Chemosensors, 2018, 6, 25.	3.6	2
10	Lipid Membrane Nanosensors for Environmental Monitoring: The Art, the Opportunities, and the Challenges. Sensors, 2018, 18, 284.	3.8	28
11	Prototype Biosensing Devices. , 2018, , 1-28.		3
12	Development of an Electrochemical Biosensor for the Rapid Detection of Saxitoxin Based on Air Stable Lipid Films with Incorporated Anti‧TX Using Graphene Electrodes. Electroanalysis, 2017, 29, 990-997.	2.9	57
13	Point-of-Care and Implantable Biosensors in Cancer Research and Diagnosis. , 2017, , 115-132.		3
14	Artificial Lipid Membranes: Past, Present, and Future. Membranes, 2017, 7, 38.	3.0	124
15	Biosensors Based on Lipid Modified Graphene Microelectrodes. Journal of Carbon Research, 2017, 3, 9.	2.7	11
16	Nano-enabled medical devices based on biosensing principles: technology basis and new concepts. AIMS Materials Science, 2017, 4, 250-266.	1.4	5
17	Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes. Membranes, 2016, 6, 43.	3.0	6
18	Electrochemical Biosensor for Naphthalene Acetic Acid in Fruits and Vegetables Based on Lipid Films with Incorporated Auxinâ€binding Protein Receptor Using Graphene Electrodes. Electroanalysis, 2016, 28, 2171-2177.	2.9	24

#	Article	IF	CITATIONS
19	Development of an Electrochemical Biosensor for the Rapid Detection of Cholera Toxin Based on Air Stable Lipid Films with Incorporated Ganglioside GM1 Using Graphene Electrodes. Electroanalysis, 2016, 28, 1584-1590.	2.9	31
20	Advances in lipid film based biosensors. TrAC - Trends in Analytical Chemistry, 2016, 79, 210-221.	11.4	19
21	Development of a Potentiometric Chemical Sensor for the Rapid Detection of Carbofuran Based on Air Stable Lipid Films with Incorporated Calix[4]arene Phosphoryl Receptor Using Graphene Electrodes. Electroanalysis, 2015, 27, 2608-2613.	2.9	21
22	A Calcium Solid State Ion Selective Minisensor Based on Lipid Films on ZnO Nanorods. Electroanalysis, 2014, 26, 919-923.	2.9	2
23	A Selective Immunosensor for Dâ€dimer Based on Antibody Immobilized on a Graphene Electrode with Incorporated Lipid Films. Electroanalysis, 2014, 26, 1522-1527.	2.9	28
24	The Development of Highly Sensitive and Selective Immunosensor Based on Antibody Immobilized ZnO Nanorods for the Detection of Dâ€Dimer. Electroanalysis, 2014, 26, 292-298.	2.9	27
25	Electrochemical Aptasensor Based on Polycarboxylic Macrocycle Modified with Neutral Red for Aflatoxin B1 Detection. Electroanalysis, 2014, 26, 2100-2109.	2.9	83
26	Potentiometric cholesterol biosensing application of graphene electrode with stabilized polymeric lipid membrane. Open Chemistry, 2013, 11, 1554-1561.	1.9	13
27	Rapid flow injection electrochemical detection of 3,3′,4,4′ tetrachlorobiphenyl using stabilized lipid membranes with incorporated sheep antibody. Open Chemistry, 2013, 11, 320-323.	1.9	2
28	Potentiometric Cholesterol Biosensor Based on ZnO Nanowalls and Stabilized Polymerized Lipid Film. Electroanalysis, 2013, 25, 367-372.	2.9	52
29	Ion Channel Switch- and Lipid Film-Based Biosensors. Series in Sensors, 2013, , 197-230.	0.0	0
30	Methods of Analysis of Saccharin. , 2012, , 863-874.		2
31	Structural Characterization of Graphene Nanosheets for Miniaturization of Potentiometric Urea Lipid Film Based Biosensors. Electroanalysis, 2012, 24, 1285-1295.	2.9	50
32	Flow Potentiometric Injection Analysis of Uric Acid Using Lipid Stabilized Films with Incorporated Uricase on ZnO Nanowires. Electroanalysis, 2012, 24, 1719-1725.	2.9	11
33	Rapid Flow Injection Electrochemical Detection of Arochlor 1242 Using Stabilized Lipid Membranes with Incorporated Sheep antiâ€PCB Antibody. Electroanalysis, 2012, 24, 495-501.	2.9	13
34	Methods of Analysis of Acesulfame-K and Aspartame. , 2012, , 847-862.		3
35	Low Calorie Nonnutritive Sweeteners. , 2012, , 79-118.		5
36	Portable Biosensors for the Rapid Detection of Biochemical Weapons of Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 1-14.	0.5	1

#	Article	IF	CITATIONS
37	Development of an Electrochemical Biosensor for the Rapid Detection of Cholera Toxin Using Air Stable Lipid Films with incorporated Ganglioside GM1. Electroanalysis, 2011, 23, 2182-2187.	2.9	16
38	Construction of a Simple Portable Optical Sensor Based on Air Stable Lipid Film with Incorporated Acetylcholinesterase for the Rapid Detection of Carbofuran in Foods. Analytical Letters, 2011, 44, 1265-1276.	1.8	4
39	Construction of a simple optical sensor based on air stable lipid film with incorporated urease for the rapid detection of urea in milk. Analytica Chimica Acta, 2010, 675, 58-63.	5.4	56
40	Stabilized Lipid Films in Electrochemical Biosensors. Electroanalysis, 2010, 22, 2747-2763.	2.9	21
41	Development of an electrochemical chemosensor for the rapid detection of zinc based on air stable lipid films with incorporated calix4arene phosphoryl receptor. International Journal of Environmental Analytical Chemistry, 2009, 89, 211-222.	3.3	22
42	Development of an Electrochemical Biosensor for the Rapid Detection of Carbofuran Based on Air Stable Lipid Films with Incorporated Calix[4]arene Phosphoryl Receptor. Electroanalysis, 2008, 20, 1574-1580.	2.9	27
43	Optical portable biosensors based on stabilized lipid membrane for the rapid detection of doping materials in human urine. Sensors and Actuators B: Chemical, 2008, 130, 577-582.	7.8	34
44	Preparation of a selective receptor for carbofuran for the development of a simple optical spot test for its rapid detection using stabilized in air lipid films with incorporated receptor. Analytica Chimica Acta, 2008, 620, 134-141.	5.4	22
45	A portable sensor for the rapid detection of naphthalene acetic acid in fruits and vegetables using stabilized in air lipid films with incorporated auxin-binding protein 1 receptor. Talanta, 2008, 77, 786-792.	5.5	19
46	Development of an Electrochemical Biosensor for the Rapid Detection of Naphthalene Acetic Acid in Fruits by Using Air Stable Lipid Films with Incorporated Auxin-Binding Protein 1 Receptor. Protein and Peptide Letters, 2008, 15, 789-794.	0.9	27
47	Stabilized Lipid Membrane Based Biosensors with Incorporated Enzyme for Repetitive Uses. Electroanalysis, 2006, 18, 2467-2474.	2.9	44
48	Flow injection analysis of carbofuran in foods using air stable lipid film based acetylcholinesterase biosensor. Analytica Chimica Acta, 2005, 537, 169-177.	5.4	53
49	Flow Injection Analysis of Mixtures of Dopamine, Adrenaline and Ephedrine in Human Biofluids Using Stabilized after Storage in Air Lipid Membranes with a Novel Incorporated Resorcin[4]arene Receptor. Electroanalysis, 2005, 17, 887-894.	2.9	11
50	Preparation of a Selective Receptor for Ephedrine for the Rapid Electrochemical Detection of Ephedrine in Human Urine Using Stabilized in Air Lipid Films with Incorporated Ephedrine Receptor. Electroanalysis, 2005, 17, 1870-1877.	2.9	7
51	Preparation of a Selective Receptor for Ephedrine for the Development of an Optical Spot Test for the Detection of Ephedrine in Human Urine Using Stabilized in Air Lipid Films with Incorporated Receptor. Analytical Chemistry, 2005, 77, 3217-3221.	6.5	24
52	Rapid Electrochemical Detection of Propranolol and Metoprolol in Pharmaceutical Preparations Using Stabilized Lipid Films. Electroanalysis, 2004, 16, 741-747.	2.9	9
53	An Optical Spot Test for the Detection of Dopamine in Human Urine Using Stabilized in Air Lipid Films. Analytical Chemistry, 2004, 76, 2174-2180.	6.5	68
54	Biosensors for the Rapid Repetitive Detection of Adrenaline Using Stabilized Bilayer Lipid Membranes (BLMs) with Incorporated Calix[4]resorcinarene Receptor. Electroanalysis, 2003, 15, 1616-1624.	2.9	16

DIMITRIOS P NIKOLELIS

#	Article	IF	CITATIONS
55	Biosensor for dopamine based on stabilized lipid films with incorporated resorcin[4]arene receptor. Bioelectrochemistry, 2003, 59, 107-112.	4.6	18
56	Investigation of interactions of a resorcin[4]arene receptor with bilayer lipid membranes (BLMs) for the electrochemical biosensing of mixtures of dopamine and ephedrine. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1558, 238-245.	2.6	19
57	Biosensors for the Rapid Detection of Dopamine Using Bilayer Lipid Membranes (BLMs) With Incorporated Calix[4]resorcinarene Receptor. Electroanalysis, 2002, 14, 783.	2.9	27
58	Rapid Detection of Vanillin in Alcoholic Beverages Using Stabilized Polymerized Lipid Film Based Biosensors. Electroanalysis, 2002, 14, 1661-1667.	2.9	8
59	Stabilized lipid film based biosensor for atenolol. Biosensors and Bioelectronics, 2002, 17, 565-572.	10.1	58
60	A minisensor for the rapid screening of atenolol in pharmaceutical preparations based on surface-stabilized bilayer lipid membranes with incorporated DNA. Bioelectrochemistry, 2002, 58, 107-112.	4.6	26
61	Electrochemical investigation of interactions of bilayer lipid membranes (BLMs) with incorporated resorcin[4]arene receptor with ephedrine for the development of a stabilized lipid film biosensor for ephedrine. Electrochimica Acta, 2002, 47, 3457-3467.	5.2	16
62	Selective Continuous Monitoring and Analysis of Mixtures of Acesulfame-K, Cyclamate, and Saccharin in Artificial Sweetener Tablets, Diet Soft Drinks, Yogurts, and Wines Using Filter-Supported Bilayer Lipid Membranes. Analytical Chemistry, 2001, 73, 5945-5952.	6.5	19
63	Electrochemical transduction of the interactions of the sweeteners acesulfame-K, saccharin and cyclamate with bilayer lipid membranes (BLMs). Electrochimica Acta, 2001, 46, 1025-1031.	5.2	23
64	Flow Injection Monitoring of Aflatoxin M1 in Cheese Using Filter-Supported Bilayer Lipid Membranes with Incorporated DNA. Electroanalysis, 2000, 12, 747-751.	2.9	22
65	A Minisensor for the Rapid Screening of Acesulfame-K, Cyclamate, and Saccharin Based on Surface-Stabilized Bilayer Lipid Membranes. Electroanalysis, 2000, 12, 786-790.	2.9	23
66	Electrochemical Detection of Hybridization of DNA Oligomers of Mixed Base Sequence by Surface-Stabilized Bilayer Lipid Membranes. Electroanalysis, 2000, 12, 921-925.	2.9	13
67	A minisensor for the rapid screening of sucralose based on surface-stabilized bilayer lipid membranes. Biosensors and Bioelectronics, 2000, 15, 439-444.	10.1	21
68	Flow Injection Monitoring and Analysis of Mixtures of Hydrazine Compounds Using Filter-Supported Bilayer Lipid Membranes with Incorporated DNA. Analytical Chemistry, 2000, 72, 180-186.	6.5	53
69	Biosensors Based on Thin Lipid Films and Liposomes. Electroanalysis, 1999, 11, 7-15.	2.9	94
70	Mechanism of Electrochemical Detection of DNA Hybridization by Bilayer Lipid Membranes. Electroanalysis, 1999, 11, 770-773.	2.9	8
71	Rapid methods for detection of Aflatoxin M1 based on electrochemical transduction by self-assembled metal-supported bilayer lipid membranes (s-BLMs) and on interferences with transduction of DNA hybridization. Electrochimica Acta, 1998, 43, 3611-3617.	5.2	34
72	DNA Biosensor Based on Self-Assembled Bilayer Lipid Membranes for the Detection of Hydrazines. Electroanalysis, 1998, 10, 691-694.	2.9	28

DIMITRIOS P NIKOLELIS

#	Article	IF	CITATIONS
73	Flow Injection Monitoring of Aflatoxin M1in Milk and Milk Preparations Using Filter-Supported Bilayer Lipid Membranes. Analytical Chemistry, 1998, 70, 2366-2371.	6.5	49
74	A Triazine Herbicide Minisensor Based on Surface-Stabilized Bilayer Lipid Membranes. Analytical Chemistry, 1997, 69, 3109-3114.	6.5	39
75	Stabilized filter-supported bilayer lipid membranes (BLMs) for automated flow monitoring of compounds of clinical, pharmaceutical, environmental and industrial interest. Journal of Automated Methods and Management in Chemistry, 1997, 19, 1-8.	0.3	10
76	Electrochemical transduction of interactions of aflatoxin M1 with bilayer lipid membranes (BLMs) for the construction of one-shot sensors. Sensors and Actuators B: Chemical, 1997, 41, 213-216.	7.8	7
77	A carbon dioxide biosensor based on hemoglobin incorporated in metal supported bilayer lipid membranes (BLMs): Investigations for enhancement of response characteristics by using platelet-activating factor. Electroanalysis, 1997, 9, 1043-1048.	2.9	14
78	Detection of DNA hybridization using self-assembled bilayer lipid membranes (BLMs). Electroanalysis, 1997, 9, 1067-1071.	2.9	36
79	Biosensors based on bilayer lipid membranes for automated continuous monitoring or rapid screening of environmental pollutants. Laboratory Robotics and Automation, 1997, 9, 285-295.	0.2	7
80	Electrochemical investigation of transduction of interactions of aflatoxin M1 with bilayer lipid membranes (BLMs). Analytica Chimica Acta, 1997, 350, 121-127.	5.4	15
81	Cyanide ion minisensor based on methemoglobin incorporated in metal supported self-assembled bilayer lipid membranes and modified with platelet-activating factor. Analytica Chimica Acta, 1997, 355, 227-234.	5.4	25
82	Ellipsometric determination of the structure of surface-stabilized bilayer lipid membranes on silver metal. Analytica Chimica Acta, 1997, 357, 73-77.	5.4	10
83	Ammonium Ion Minisensors from Self-Assembled Bilayer Lipid Membranes Using Gramicidin as an Ionophore. Modulation of Ammonium Selectivity by Platelet-Activating Factor. Analytical Chemistry, 1996, 68, 1735-1741.	6.5	97
84	Electrochemical transduction of interactions of atrazine with bilayer lipid membranes. Electroanalysis, 1996, 8, 643-647.	2.9	29
85	Flow injection monitoring and analysis of mixtures of simazine, atrazine, and propazine using filter-supported bilayer lipid membranes (BLMs). Electroanalysis, 1996, 8, 907-912.	2.9	44
86	Stabilized bilayer lipid membranes for flow-through experiments. Electroanalysis, 1995, 7, 531-536.	2.9	63
87	Bilayer lipid membranes as electrochemical detectors for flow injection immunoanalysis. Electroanalysis, 1995, 7, 1082-1089.	2.9	27
88	Bilayer Lipid Membranes for Flow Injection Monitoring of Acetylcholine, Urea, and Penicillin. Analytical Chemistry, 1995, 67, 936-944.	6.5	79
89	1994 McBryde Medal Award Lecture Investigations of organized monolayer films for biosensor development. Canadian Journal of Chemistry, 1995, 73, 1239-1250.	1.1	11
90	The bilayer lipid membrane as a generic electrochemical transducer of hydrolytic enzyme reactions. Biosensors and Bioelectronics, 1994, 9, xxii-xxxvii.	10.1	11

DIMITRIOS P NIKOLELIS

#	Article	IF	CITATIONS
91	Direct electrochemical sensing of insecticides by bilayer lipid membranes. Analytica Chimica Acta, 1994, 288, 187-192.	5.4	26
92	Bilayer lipid membranes as electrochemical switches in reactions involving alteration of surface charge. Thin Solid Films, 1994, 244, 917-922.	1.8	11
93	Direct electrochemical transduction of an immunological reaction by bilayer lipid membranes. Analytica Chimica Acta, 1993, 282, 527-534.	5.4	22
94	Electrochemical transduction of the acetylcholine-acetylcholinesterase reaction by bilayer lipid membranes. Analytica Chimica Acta, 1993, 281, 569-576.	5.4	25
95	Bilayer lipid membranes for electrochemical sensing. Electroanalysis, 1993, 5, 539-545.	2.9	70
96	Establishment and control of artificial ion-conductive zones for lipid membrane biosensor development. Analytica Chimica Acta, 1992, 257, 239-245.	5.4	37
97	New electrochemical sensors. Analytical Proceedings, 1991, 28, 366.	0.4	16
98	Ion permeability through bilayer lipid membranes for biosensor development: control by chemical modification of interfacial regions between phase domains. Analyst, The, 1991, 116, 1221.	3.5	17
99	Dynamic response characteristics of the potentiometric carbon dioxide sensor for the determination of aspartame. Analyst, The, 1990, 115, 883.	3.5	15
100	Pre-concentration of indolic compounds at a carbon paste electrode and indirect determination of L-tryptophan in serum by adsorptive stripping voltammetry. Analyst, The, 1990, 115, 291.	3.5	42