
Simon G Potts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375297/publications.pdf Version: 2024-02-01

SIMON C. POTTS

#	Article	IF	CITATIONS
1	Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agriculture, Ecosystems and Environment, 2022, 325, 107755.	5.3	14
2	Establishment and management of wildflower areas for insect pollinators in commercial orchards. Basic and Applied Ecology, 2022, 58, 2-14.	2.7	16
3	Rapid assessment of insect pollination services to inform decisionâ€making. Conservation Biology, 2022, 36, .	4.7	3
4	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
5	The role of climate in past forest loss in an ecologically important region of South Asia. Global Change Biology, 2022, 28, 3883-3901.	9.5	10
6	Communicating carabids: Engaging farmers to encourage uptake of integrated pest management. Pest Management Science, 2022, 78, 2477-2491.	3.4	8
7	Characterisation model approach for LCA to estimate land use impacts on pollinator abundance and illustrative characterisation factors. Journal of Cleaner Production, 2022, 346, 131043.	9.3	3
8	Inventorying and monitoring crop pollinating bees: Evaluating the effectiveness of common sampling methods. Insect Conservation and Diversity, 2022, 15, 299-311.	3.0	11
9	Landscape-scale drivers of pollinator communities may depend on land-use configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210172.	4.0	3
10	Effects of ozone air pollution on crop pollinators and pollination. Global Environmental Change, 2022, 75, 102529.	7.8	9
11	Traditional and cover crop-derived mulches enhance soil ecosystem services in apple orchards. Applied Soil Ecology, 2022, 178, 104569.	4.3	13
12	The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biological Reviews, 2022, 97, 1930-1947.	10.4	40
13	Above―and belowâ€ground assessment of carabid community responses to crop type and tillage. Agricultural and Forest Entomology, 2021, 23, 1-12.	1.3	13
14	Pollinator monitoring more than pays for itself. Journal of Applied Ecology, 2021, 58, 44-57.	4.0	41
15	Scales matter: Maximising the effectiveness of interventions for pollinators and pollination. Advances in Ecological Research, 2021, 64, 105-147.	2.7	7
16	A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems. Nature Ecology and Evolution, 2021, 5, 219-230.	7.8	39
17	Evaluating predictive performance of statistical models explaining wild bee abundance in a massâ€flowering crop. Ecography, 2021, 44, 525-536.	4.5	11
18	Quantifying nectar production by flowering plants in urban and rural landscapes. Journal of Ecology, 2021, 109, 1747-1757.	4.0	44

#	Article	IF	CITATIONS
19	The role of insect pollinators in avocado production: A global review. Journal of Applied Entomology, 2021, 145, 369-383.	1.8	22
20	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	2.6	43
21	Evaluating competition for forage plants between honey bees and wild bees in Denmark. PLoS ONE, 2021, 16, e0250056.	2.5	21
22	Opportunities to enhance pollinator biodiversity in solar parks. Renewable and Sustainable Energy Reviews, 2021, 145, 111065.	16.4	31
23	A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology and Evolution, 2021, 5, 1453-1461.	7.8	173
24	Field boundary features can stabilise bee populations and the pollination of massâ€flowering crops in rotational systems. Journal of Applied Ecology, 2021, 58, 2287-2304.	4.0	10
25	Opportunities to reduce pollination deficits and address production shortfalls in an important insectâ€pollinated crop. Ecological Applications, 2021, 31, e02445.	3.8	24
26	Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agriculture, Ecosystems and Environment, 2021, 315, 107447.	5.3	24
27	Honeybee pollination benefits could inform solar park business cases, planning decisions and environmental sustainability targets. Biological Conservation, 2021, 263, 109332.	4.1	8
28	Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes. Plant Ecology and Evolution, 2021, 154, 341-350.	0.7	11
29	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
30	Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Global Food Security, 2020, 26, 100394.	8.1	17
31	Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security. Advances in Ecological Research, 2020, 63, 193-253.	2.7	56
32	Quantifying crop pollinator-dependence and pollination deficits: The effects of experimental scale on yield and quality assessments. Agriculture, Ecosystems and Environment, 2020, 304, 107106.	5.3	20
33	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	6.4	319
34	Reliably predicting pollinator abundance: Challenges of calibrating processâ€based ecological models. Methods in Ecology and Evolution, 2020, 11, 1673-1689.	5.2	22
35	The potential for wildflower interventions to enhance natural enemies and pollinators in commercial apple orchards is limited by other management practices. Agriculture, Ecosystems and Environment, 2020, 301, 107034.	5.3	25
36	Temperate agroforestry systems provide greater pollination service than monoculture. Agriculture, Ecosystems and Environment, 2020, 301, 107031.	5.3	40

#	Article	IF	CITATIONS
37	A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology, 2020, 57, 681-694.	4.0	77
38	Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agriculture, Ecosystems and Environment, 2019, 285, 106625.	5.3	66
39	Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): Evidence and knowledge gaps. Science of the Total Environment, 2019, 695, 133833.	8.0	19
40	Species matter when considering landscape effects on carabid distributions. Agriculture, Ecosystems and Environment, 2019, 285, 106631.	5.3	22
41	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
42	Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods. Methods in Ecology and Evolution, 2019, 10, 2129-2140.	5.2	81
43	Capacity and willingness of farmers and citizen scientists to monitor crop pollinators and pollination services. Global Ecology and Conservation, 2019, 20, e00781.	2.1	15
44	Biocultural approaches to pollinator conservation. Nature Sustainability, 2019, 2, 214-222.	23.7	74
45	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
46	A systems approach reveals urban pollinator hotspots and conservation opportunities. Nature Ecology and Evolution, 2019, 3, 363-373.	7.8	293
47	Ecological Intensification: Bridging the Gap between Science and Practice. Trends in Ecology and Evolution, 2019, 34, 154-166.	8.7	318
48	Economic valuation of natural pest control of the summer grain aphid in wheat in South East England. Ecosystem Services, 2018, 30, 149-157.	5.4	14
49	Bee conservation: Inclusive solutions. Science, 2018, 360, 389-390.	12.6	16
50	Insect pollination as an agronomic input: Strategies for oilseed rape production. Journal of Applied Ecology, 2018, 55, 2834-2842.	4.0	36
51	Patterns of size variation in bees at a continental scale: does Bergmann's rule apply?. Oikos, 2018, 127, 1095-1103.	2.7	48
52	Plant–pollinator networks in semiâ€natural grasslands are resistant to the loss of pollinators during blooming of massâ€flowering crops. Ecography, 2018, 41, 62-74.	4.5	29
53	Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 2018, 26, 8-23.	2.7	216
54	Assessment of the response of pollinator abundance to environmental pressures using structured expert elicitation. Journal of Apicultural Research, 2018, 57, 593-604.	1.5	11

#	Article	IF	CITATIONS
55	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
56	Integrated crop pollination to buffer spatial and temporal variability in pollinator activity. Basic and Applied Ecology, 2018, 32, 77-85.	2.7	10
57	European farmers' incentives to promote natural pest control service in arable fields. Land Use Policy, 2018, 78, 682-690.	5.6	17
58	Robotic bees for crop pollination: Why drones cannot replace biodiversity. Science of the Total Environment, 2018, 642, 665-667.	8.0	39
59	Disentangling the contributions of dispersal limitation, ecological drift, and ecological filtering to wild bee community assembly. Ecosphere, 2017, 8, e01650.	2.2	14
60	Buffer strip management to deliver plant and invertebrate resources for farmland birds in agricultural landscapes. Agriculture, Ecosystems and Environment, 2017, 240, 215-223.	5.3	9
61	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
62	The costs of beekeeping for pollination services in the UK – an explorative study. Journal of Apicultural Research, 2017, 56, 310-317.	1.5	11
63	A method for the objective selection of landscapeâ€scale study regions and sites at the national level. Methods in Ecology and Evolution, 2017, 8, 1468-1476.	5.2	23
64	Dimensions of biodiversity loss: Spatial mismatch in landâ€use impacts on species, functional and phylogenetic diversity of European bees. Diversity and Distributions, 2017, 23, 1435-1446.	4.1	43
65	Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 2017, 20, 1427-1436.	6.4	70
66	The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agriculture, Ecosystems and Environment, 2017, 247, 363-370.	5.3	119
67	Wild bee and floral diversity coâ€vary in response to the direct and indirect impacts of land use. Ecosphere, 2017, 8, e02008.	2.2	29
68	The city as a refuge for insect pollinators. Conservation Biology, 2017, 31, 24-29.	4.7	368
69	Arthropod Pest Control for UK Oilseed Rape – Comparing Insecticide Efficacies, Side Effects and Alternatives. PLoS ONE, 2017, 12, e0169475.	2.5	17
70	Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity. PLoS ONE, 2016, 11, e0153889.	2.5	95
71	Supporting local diversity of habitats and species on farmland: a comparison of three wildlifeâ€friendly schemes. Journal of Applied Ecology, 2016, 53, 171-180.	4.0	28
72	Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba). Journal of Experimental Botany, 2016, 68, erw430.	4.8	21

#	Article	IF	CITATIONS
73	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	2.7	115
74	Susceptibility of Faba Bean (<i>Vicia faba</i> L.) to Heat Stress During Floral Development and Anthesis. Journal of Agronomy and Crop Science, 2016, 202, 508-517.	3.5	62
75	Massâ€flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecology Letters, 2016, 19, 1228-1236.	6.4	195
76	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	27.8	1,204
77	Ten policies for pollinators. Science, 2016, 354, 975-976.	12.6	142
78	Molecular taxonomic analysis of the plant associations of adult pollen beetles (Nitidulidae:) Tj ETQq0 0 0 rgBT /Ov 1101-1116.	verlock 10 2.0	0 Tf 50 547 To 16
79	Climate change impacts on pollination. Nature Plants, 2016, 2, 16092.	9.3	100
80	Drivers influencing farmer decisions for adopting organic or conventional coffee management practices. Food Policy, 2016, 58, 49-61.	6.0	76
81	Insect pollination reduces yield loss following heat stress in faba bean (Vicia faba L.). Agriculture, Ecosystems and Environment, 2016, 220, 89-96.	5.3	49
82	Delivery of floral resources and pollination services on farmland under three different wildlife-friendly schemes. Agriculture, Ecosystems and Environment, 2016, 220, 142-151.	5.3	22
83	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	7.1	618
84	Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows. PLoS ONE, 2016, 11, e0158117.	2.5	233
85	A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ, 2016, 4, e2249.	2.0	115
86	A multilevel analysis on pollination-related policies. Ecosystem Services, 2015, 14, 133-143.	5.4	10
87	Ecological traits affect the sensitivity of bees to landâ€use pressures in <scp>E</scp> uropean agricultural landscapes. Journal of Applied Ecology, 2015, 52, 1567-1577.	4.0	127
88	Local and landscapeâ€level floral resources explain effects of wildflower strips on wild bees across four European countries. Journal of Applied Ecology, 2015, 52, 1165-1175.	4.0	208
89	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	4.0	136
90	Highâ€ŧhroughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution, 2015, 6, 1034-1043.	5.2	119

#	Article	IF	CITATIONS
91	The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150294.	2.6	120
92	Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type. Ecology and Evolution, 2015, 5, 4426-4436.	1.9	9
93	Evidenceâ€based conservation: reply to Tepedino et al Conservation Biology, 2015, 29, 283-285.	4.7	10
94	A stated preference valuation of the non-market benefits of pollination services in the UK. Ecological Economics, 2015, 111, 76-85.	5.7	36
95	Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142849.	2.6	393
96	Disentangling the effects of landâ€use change, climate and <scp><scp>CO₂</scp></scp> on projected future <scp>E</scp> uropean habitat types. Global Ecology and Biogeography, 2015, 24, 653-663.	5.8	30
97	Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142620.	2.6	467
98	Climate change impacts on bumblebees converge across continents. Science, 2015, 349, 177-180.	12.6	572
99	Local and landscape effects on bee functional guilds in pigeon pea crops in Kenya. Journal of Insect Conservation, 2015, 19, 647-658.	1.4	14
100	Size matters: Body size determines functional responses of ground beetle interactions. Basic and Applied Ecology, 2015, 16, 621-628.	2.7	18
101	Ecological and social drivers of coffee pollination in Santander, Colombia. Agriculture, Ecosystems and Environment, 2015, 211, 145-154.	5.3	37
102	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	12.8	656
103	Rapid assessment of historic, current and future habitat quality for biodiversity around UK Natura 2000 sites. Environmental Conservation, 2015, 42, 31-40.	1.3	13
104	A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151821.	2.6	161
105	Relocation risky for bumblebee colonies—Response. Science, 2015, 350, 287-287.	12.6	4
106	Pollinator conservation—the difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 2015, 12, 93-101.	4.4	118
107	Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature, 2015, 528, 548-550.	27.8	249
108	Vegetation coverage change in the EU: patterns inside and outside Natura 2000 protected areas. Biodiversity and Conservation, 2015, 24, 579-591.	2.6	43

#	Article	IF	CITATIONS
109	Interactive effect of floral abundance and semi-natural habitats on pollinators in field beans (Vicia) Tj ETQq1 1	0.78 <u>43</u> 14 rg	gBT_/Overlock
110	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	2.5	171
111	Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure. PLoS ONE, 2014, 9, e103592.	2.5	182
112	Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2014, 2, e328.	2.0	183
113	Crop Pollination. , 2014, , 408-418.		2
114	Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agricultural and Forest Entomology, 2014, 16, 119-128.	1.3	154
115	A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140558.	2.6	308
116	Survival, reproduction and population growth of the bee pollinator, <i>Osmia rufa</i> (Hymenoptera:) Tj ETQo 113-121.	0 0 0 rgBT / 3.0	Overlock 10 T 50
117	Climateâ€driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits. Global Change Biology, 2014, 20, 2815-2828.	9.5	57
118	Achieving production and conservation simultaneously in tropical agricultural landscapes. Agriculture, Ecosystems and Environment, 2014, 192, 130-134.	5.3	11
119	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	6.4	87
120	Distance from forest edge affects bee pollinators in oilseed rape fields. Ecology and Evolution, 2014, 4, 370-380.	1.9	90
121	Costing conservation: an expert appraisal of the pollinator habitat benefits of England's entry level stewardship. Biodiversity and Conservation, 2014, 23, 1193-1214.	2.6	20
122	The identity of crop pollinators helps target conservation for improved ecosystem services. Biological Conservation, 2014, 169, 128-135.	4.1	151
123	Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 2014, 184, 34-40.	5.3	239
124	Scale sensitivity of drivers of environmental change across Europe. Global Environmental Change, 2013, 23, 167-178.	7.8	27
125	Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 2013, 28, 524-530.	8.7	320
126	Novel management to enhance spider biodiversity in existing grass buffer strips. Agricultural and Forest Entomology, 2013, 15, 77-85.	1.3	13

#	Article	IF	CITATIONS
127	Detecting Insect Pollinator Declines on Regional and Global Scales. Conservation Biology, 2013, 27, 113-120.	4.7	178
128	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	12.6	1,767
129	Comparison of pollinators and natural enemies: a metaâ€analysis of landscape and local effects on abundance and richness in crops. Biological Reviews, 2013, 88, 1002-1021.	10.4	202
130	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	6.4	875
131	Environmental factors driving the effectiveness of European agriâ€environmental measures in mitigating pollinator loss – a metaâ€analysis. Ecology Letters, 2013, 16, 912-920.	6.4	378
132	Species richness declines and biotic homogenisation have slowed down for <scp>NW</scp> â€European pollinators and plants. Ecology Letters, 2013, 16, 870-878.	6.4	305
133	Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology and Evolution, 2013, 28, 230-238.	8.7	1,325
134	Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 2013, 11, 251-259.	4.0	980
135	Identifying key knowledge needs for evidenceâ€based conservation of wild insect pollinators: a collaborative crossâ€sectoral exercise. Insect Conservation and Diversity, 2013, 6, 435-446.	3.0	61
136	Enhanced biodiversity and pollination in <scp>UK</scp> agroforestry systems. Journal of the Science of Food and Agriculture, 2013, 93, 2073-2075.	3.5	39
137	Species Distribution Models for Crop Pollination: A Modelling Framework Applied to Great Britain. PLoS ONE, 2013, 8, e76308.	2.5	54
138	Enhancement of Buffer Strips Can Improve Provision of Multiple Ecosystem Services. Outlooks on Pest Management, 2012, 23, 258-262.	0.2	4
139	Investigating the phytotoxicity of the graminicide fluazifopâ€Pâ€butyl against native UK wildflower species. Pest Management Science, 2012, 68, 412-421.	3.4	9
140	Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4447-4456.	2.6	198
141	Pollinator community responses to the spatial population structure of wild plants: A pan-European approach. Basic and Applied Ecology, 2012, 13, 489-499.	2.7	28
142	Abundance and diversity of wild bees along gradients of heavy metal pollution. Journal of Applied Ecology, 2012, 49, 118-125.	4.0	81
143	Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem. Biological Conservation, 2011, 144, 2424-2431.	4.1	49
144	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	6.4	681

#	Article	IF	CITATIONS
145	The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic and Applied Ecology, 2011, 12, 321-331.	2.7	191
146	Novel margin management to enhance Auchenorrhyncha biodiversity in intensive grasslands. Agriculture, Ecosystems and Environment, 2011, 140, 506-513.	5.3	10
147	Pollination services in the UK: How important are honeybees?. Agriculture, Ecosystems and Environment, 2011, 142, 137-143.	5.3	278
148	New tools to boost butterfly habitat quality in existing grass buffer strips. Journal of Insect Conservation, 2011, 15, 221-232.	1.4	30
149	Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research, 2011, 26, 969-983.	1.5	135
150	Enhancing habitat to help the plight of the bumblebee. Pest Management Science, 2011, 67, 377-379.	3.4	10
151	A qualitative method for the spatial and thematic downscaling of land-use change scenarios. Environmental Science and Policy, 2011, 14, 268-278.	4.9	11
152	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	1.5	64
153	The Utility of Aerial Pan-Trapping for Assessing Insect Pollinators Across Vertical Strata. Journal of the Kansas Entomological Society, 2011, 84, 260-270.	0.2	26
154	Assessing continental-scale risks for generalist and specialist pollinating bee species under climate change. BioRisk, 2011, 6, 1-18.	0.2	15
155	Quantifying the Impact and Relevance of Scientific Research. PLoS ONE, 2011, 6, e27537.	2.5	58
156	A framework for comparing pollinator performance: effectiveness and efficiency. Biological Reviews, 2010, 85, 435-451.	10.4	258
157	The status of European non- <i>Apis</i> bees. Journal of Apicultural Research, 2010, 49, 137-138.	1.5	2
158	Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 2010, 19, 2873-2893.	2.6	759
159	A novel method for assessing risks to pollinators from plant protection products using honeybees as a model species. Ecotoxicology, 2010, 19, 1347-1359.	2.4	24
160	Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environmental Monitoring and Assessment, 2010, 164, 337-348.	2.7	10
161	Impacts of a pesticide on pollinator species richness at different spatial scales. Basic and Applied Ecology, 2010, 11, 106-115.	2.7	237
162	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	10.4	259

#	Article	IF	CITATIONS
163	Effects of patch size and density on flower visitation and seed set of wild plants: a panâ€European approach. Journal of Ecology, 2010, 98, 188-196.	4.0	199
164	The impact of an insecticide on insect flower visitation and pollination in an agricultural landscape. Agricultural and Forest Entomology, 2010, 12, 259-266.	1.3	22
165	Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and Ecological Scales – Research Needs and Approaches of the <i>SCALES</i> Project. Gaia, 2010, 19, 187-193.	0.7	54
166	Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research, 2010, 49, 15-22.	1.5	469
167	Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2075-2082.	2.6	217
168	Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 2010, 143, 2280-2291.	4.1	543
169	Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biological Conservation, 2010, 143, 1860-1867.	4.1	84
170	Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 2010, 25, 345-353.	8.7	4,333
171	Chapter 3. Ecosystem Services and Food Production. Issues in Environmental Science and Technology, 2010, , 52-69.	0.4	10
172	New tools to boost butterfly habitat quality in existing grass buffer strips. , 2010, , 225-236.		0
173	The impact of Solanum elaeagnifolium, an invasive plant in the Mediterranean, on the flower visitation and seed set of the native co-flowering species Glaucium flavum. Plant Ecology, 2009, 205, 77-85.	1.6	32
174	Floral volatiles controlling ant behaviour. Functional Ecology, 2009, 23, 888-900.	3.6	98
175	Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology, 2009, 78, 98-108.	2.8	165
176	Enhancing pollinator biodiversity in intensive grasslands. Journal of Applied Ecology, 2009, 46, 369-379.	4.0	161
177	Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. Journal of Applied Ecology, 2009, 46, 920-929.	4.0	84
178	Conservation ecology of bees: populations, species and communities. Apidologie, 2009, 40, 211-236.	2.0	129
179	Landscape context and habitat type as drivers of bee diversity in European annual crops. Agriculture, Ecosystems and Environment, 2009, 133, 40-47.	5.3	134
180	The impact of two arable field margin management schemes on litter decomposition. Applied Soil Ecology, 2009, 41, 90-97.	4.3	11

#	Article	IF	CITATIONS
181	Characteristics of trees used as nest sites byApis dorsata(Hymenoptera, Apidae) in the Nilgiri Biosphere Reserve, India. Journal of Tropical Ecology, 2009, 25, 559-562.	1.1	14
182	Effects of seed mixture and management on beetle assemblages of arable field margins. Agriculture, Ecosystems and Environment, 2008, 125, 246-254.	5.3	33
183	The value of sown grass margins for enhancing soil macrofaunal biodiversity in arable systems. Agriculture, Ecosystems and Environment, 2008, 127, 119-125.	5.3	46
184	Landscape effects on crop pollination services: are there general patterns?. Ecology Letters, 2008, 11, 499-515.	6.4	983
185	The effects of seed mix and management on the abundance of desirable and pernicious unsown species in arable buffer strip communities. Weed Research, 2008, 48, 113-123.	1.7	20
186	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	5.4	562
187	Evaluating the efficiency of sampling methods in assessing soil macrofauna communities in arable systems. European Journal of Soil Biology, 2008, 44, 271-276.	3.2	32
188	The importance of sward architectural complexity in structuring predatory and phytophagous invertebrate assemblages. Ecological Entomology, 2007, 32, 302-311.	2.2	78
189	Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 2007, 10, 299-314.	6.4	1,096
190	The effects of cattle grazing on plant-pollinator communities in a fragmented Mediterranean landscape. Oikos, 2006, 114, 529-543.	2.7	76
191	Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science, 2006, 313, 351-354.	12.6	2,359
192	An ancient pollinator of a contemporary plant (Cyclamen persicum): When pollination syndromes break down. Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 370-373.	1.2	13
193	Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape. Biological Conservation, 2006, 129, 519-529.	4.1	186
194	COMMENTARY ON KLEIJN ET AL. 2006. Ecology Letters, 2006, 9, 254-256.	6.4	13
195	Alarm: Assessing Large-scale environmental Risks for biodiversity with tested Methods. Gaia, 2005, 14, 69-72.	0.7	160
196	Establishing field margins to promote beetle conservation in arable farms. Agriculture, Ecosystems and Environment, 2005, 107, 255-266.	5.3	75
197	Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers. Die Naturwissenschaften, 2005, 92, 444-450.	1.6	58
198	Novel field margin management to enhance invertebrate biodiversity in intensive livestock farms. Proceedings of the British Society of Animal Science, 2005, 2005, 66-66.	0.0	0

#	Article	IF	CITATIONS
199	Pollinator diversity and crop pollination services are at risk. Trends in Ecology and Evolution, 2005, 20, 651-652.	8.7	327
200	Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecological Entomology, 2005, 30, 78-85.	2.2	395
201	Nectar resource diversity organises flower-visitor community structure. Entomologia Experimentalis Et Applicata, 2004, 113, 103-107.	1.4	64
202	The Role of Flower Inclination, Depth, and Height in the Preferences of a Pollinating Beetle (Coleoptera: Glaphyridae). Journal of Insect Behavior, 2004, 17, 823-834.	0.7	14
203	Response of plant-pollinator communities to fire: changes in diversity, abundance and floral reward structure. Oikos, 2003, 101, 103-112.	2.7	201
204	LINKING BEES AND FLOWERS: HOW DO FLORAL COMMUNITIES STRUCTURE POLLINATOR COMMUNITIES?. Ecology, 2003, 84, 2628-2642.	3.2	550
205	THE UTILITY OF FUNDAMENTAL ECOLOGICAL RESEARCH OF PLANT-POLLINATOR INTERACTIONS AS THE BASIS FOR LANDSCAPE MANAGEMENT PRACTICES. Acta Horticulturae, 2001, , 141-144.	0.2	5
206	Pollination of a core flowering shrub species in Mediterranean phrygana: variation in pollinator diversity, abundance and effectiveness in response to fire. Oikos, 2001, 92, 71-80.	2.7	70
207	A new pollination probability index (PPI) for pollen load analysis as a measure for pollination effectiveness of bees. Journal of Apicultural Research, 1999, 38, 19-23.	1.5	13
208	Windows of opportunity and the temporal structuring of foraging activity in a desert solitary bee. Ecological Entomology, 1999, 24, 208-221.	2.2	65
209	Compact housing in built-up areas: spatial patterning of nests in aggregations of a ground-nesting bee. Ecological Entomology, 1998, 23, 427-432.	2.2	26
210	Abiotic and biotic factors influencing nestâ€site selection by Halictus rubicundus , a groundâ€nesting halictine bee. Ecological Entomology, 1997, 22, 319-328.	2.2	152
211	Climatic Risk and Distribution Atlas of European Bumblebees. BioRisk, 0, 10, 1-236.	0.2	171
212	Monitoring bee health in European agro-ecosystems using wing morphology and fat bodies. One Ecosystem, 0, 6, .	0.0	10
213	Nature Conservation – a new dimension in Open Access publishing bridging science and application. Nature Conservation, 0, 1, 1-10.	0.0	5
214	Biodiversity conservation across scales: lessons from a science–policy dialogue. Nature Conservation, 0, 2, 7-19.	0.0	47