
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3374876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus for Sustainable Development Goal target of doubling smallholder productivity. Nature Sustainability, 2022, 5, 57-63.	23.7	45
2	Exploring river nitrogen and phosphorus loading and export to global coastal waters in the Shared Socio-economic pathways. Global Environmental Change, 2022, 72, 102426.	7.8	62
3	Exploring Seasonal and Annual Nitrogen Transfer and Ecological Response in Riverâ€Coast Continuums Based on Spatially Explicit Models. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	2
4	Damming alters the particulate organic carbon sources, burial, export and estuarine biogeochemistry of rivers. Journal of Hydrology, 2022, 607, 127525.	5.4	12
5	Harmful Algal Blooms in Chinese Coastal Waters Will Persist Due to Perturbed Nutrient Ratios. Environmental Science and Technology Letters, 2021, 8, 276-284.	8.7	59
6	Time to rethink trophic levels in aquaculture policy. Reviews in Aquaculture, 2021, 13, 1583-1593.	9.0	31
7	The Mediterranean Region as a Paradigm of the Global Decoupling of N and P Between Soils and Freshwaters. Global Biogeochemical Cycles, 2021, 35, e2020GB006874.	4.9	9
8	Quantification of global and national nitrogen budgets for crop production. Nature Food, 2021, 2, 529-540.	14.0	108
9	More efficient phosphorus use can avoid cropland expansion. Nature Food, 2021, 2, 509-518.	14.0	37
10	Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2021, 2, 886-893.	14.0	68
11	Exploring Spatially Explicit Changes in Carbon Budgets of Global River Basins during the 20th Century. Environmental Science & Technology, 2021, 55, 16757-16769.	10.0	21
12	Aquaculture Production is a Large, Spatially Concentrated Source of Nutrients in Chinese Freshwater and Coastal Seas. Environmental Science & Technology, 2020, 54, 1464-1474.	10.0	102
13	Biogenic Silica Composition and Storage in the Yellow River Delta Wetland with Implications for the Carbon Preservation. Wetlands, 2020, 40, 1085-1095.	1.5	5
14	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	27.8	814
15	Storm-induced sediment resuspension in the Changjiang River Estuary leads to alleviation of phosphorus limitation. Marine Pollution Bulletin, 2020, 160, 111628.	5.0	10
16	Integrating Life Cycle and Impact Assessments to Map Food's Cumulative Environmental Footprint. One Earth, 2020, 3, 65-78.	6.8	16
17	Modeling Processâ€Based Biogeochemical Dynamics in Surface Fresh Waters of Large Watersheds With the IMAGEâ€DGNM Framework. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001796.	3.8	16
18	Estimating dissolved carbon concentrations in global soils: a global database and model. SN Applied Sciences, 2020, 2, 1.	2.9	14

#	Article	IF	CITATIONS
19	Exploring Long-Term Changes in Silicon Biogeochemistry Along the River Continuum of the Rhine and Yangtze (Changjiang). Environmental Science & Technology, 2020, 54, 11940-11950.	10.0	18
20	Spatially Explicit Inventory of Sources of Nitrogen Inputs to the Yellow Sea, East China Sea, and South China Sea for the Period 1970–2010. Earth's Future, 2020, 8, e2020EF001516.	6.3	32
21	A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change, 2020, 61, 102029.	7.8	30
22	Comment on "Multi-Scale Modeling of Nutrient Pollution in the Rivers of China― Environmental Science & Technology, 2020, 54, 2043-2045.	10.0	1
23	Further Evidence of the Haber-Bosch—Harmful Algal Bloom (HB-HAB) Link and the Risk of Suggesting HAB Control Through Phosphorus Reductions Only. , 2020, , 255-282.		5
24	Exploring oxygen dynamics and depletion in an intensive bivalve production area in the coastal sea off Rushan Bay, China. Marine Ecology - Progress Series, 2020, 649, 53-65.	1.9	4
25	Putting all foods on the same table: Achieving sustainable food systems requires full accounting. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18152-18156.	7.1	66
26	Global Opportunities to Increase Agricultural Independence Through Phosphorus Recycling. Earth's Future, 2019, 7, 370-383.	6.3	62
27	Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 2019, 665, 739-751.	8.0	55
28	Modeling phosphorus in rivers at the global scale: recent successes, remaining challenges, and near-term opportunities. Current Opinion in Environmental Sustainability, 2019, 36, 68-77.	6.3	18
29	Analysing trade-offs between SDGs related to water quality using salinity as a marker. Current Opinion in Environmental Sustainability, 2019, 36, 96-104.	6.3	49
30	Soil Chemistry Aspects of Predicting Future Phosphorus Requirements in Sub aharan Africa. Journal of Advances in Modeling Earth Systems, 2019, 11, 327-337.	3.8	9
31	Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. Journal of Environmental Management, 2019, 231, 446-456.	7.8	149
32	Implications of eutrophication for biogeochemical processes in the Three Gorges Reservoir, China. Regional Environmental Change, 2019, 19, 55-63.	2.9	19
33	Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environmental Research Letters, 2018, 13, 044008.	5.2	61
34	Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change, 2018, 50, 149-163.	7.8	140
35	Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century. Global and Planetary Change, 2018, 163, 67-85.	3.5	74
36	Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China. Science of the Total Environment, 2018, 627, 361-372.	8.0	45

#	Article	IF	CITATIONS
37	Socio-environmental consideration of phosphorus flows in the urban sanitation chain of contrasting cities. Regional Environmental Change, 2018, 18, 1387-1401.	2.9	17
38	Key Questions and Recent Research Advances on Harmful Algal Blooms in Relation to Nutrients and Eutrophication. Ecological Studies, 2018, , 229-259.	1.2	56
39	Changing Land-, Sea-, and Airscapes: Sources of Nutrient Pollution Affecting Habitat Suitability for Harmful Algae. Ecological Studies, 2018, , 53-76.	1.2	25
40	Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 2018, 11, 429-451.	3.6	39
41	Changes in the distribution and preservation of silica in the Bohai Sea due to changing terrestrial inputs. Continental Shelf Research, 2018, 166, 1-9.	1.8	6
42	Exploring spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea. Water Research, 2018, 142, 246-255.	11.3	145
43	Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 2017, 7, 40366.	3.3	165
44	Phosphorus in agricultural soils: drivers of its distribution at the global scale. Global Change Biology, 2017, 23, 3418-3432.	9.5	75
45	Nitrogen transport, transformation, and retention in the Three Gorges Reservoir: A mass balance approach. Limnology and Oceanography, 2017, 62, 2323-2337.	3.1	34
46	Efficiency of phosphorus resource use in Africa as defined by soil chemistry and the impact on crop production. Energy Procedia, 2017, 123, 97-104.	1.8	10
47	Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 2017, 42, 346-358.	7.8	277
48	Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 2017, 238, 25-35.	5.3	178
49	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	7.8	523
50	Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century. Biogeosciences, 2017, 14, 2055-2068.	3.3	43
51	Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences, 2016, 13, 2441-2451.	3.3	329
52	Distribution and budget of dissolved and biogenic silica in the Bohai Sea and Yellow Sea. Biogeochemistry, 2016, 130, 85-101.	3.5	27
53	Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters, 2016, 11, 095007.	5.2	227
54	Exploring resource efficiency for energy, land and phosphorus use: Implications for resource scarcity and the global environment. Global Environmental Change, 2016, 36, 21-34.	7.8	16

#	Article	IF	CITATIONS
55	Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nature Communications, 2016, 7, 10696.	12.8	117
56	Losses of Ammonia and Nitrate from Agriculture and Their Effect on Nitrogen Recovery in the European Union and the United States between 1900 and 2050. Journal of Environmental Quality, 2015, 44, 356-367.	2.0	100
57	Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance. Geoscientific Model Development, 2015, 8, 4045-4067.	3.6	124
58	Global implementation of two shared socioeconomic pathways for future sanitation and wastewater flows. Water Science and Technology, 2015, 71, 227-233.	2.5	18
59	Pathways to achieve a set of ambitious global sustainability objectives by 2050: Explorations using the IMAGE integrated assessment model. Technological Forecasting and Social Change, 2015, 98, 303-323.	11.6	141
60	Key role of China and its agriculture in global sustainable phosphorus management. Environmental Research Letters, 2014, 9, 054003.	5.2	65
61	The Haber Bosch–harmful algal bloom (HB–HAB) link. Environmental Research Letters, 2014, 9, 105001.	5.2	216
62	Nitrogen use and food production in European regions from a global perspective. Journal of Agricultural Science, 2014, 152, 9-19.	1.3	27
63	Crop yield response to soil fertility and N, P, K inputs in different environments: Testing and improving the QUEFTS model. Field Crops Research, 2014, 157, 35-46.	5.1	74
64	Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Global Change Biology, 2014, 20, 3845-3858.	9.5	184
65	A mid-term analysis of progress toward international biodiversity targets. Science, 2014, 346, 241-244.	12.6	949
66	Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Global Biogeochemical Cycles, 2013, 27, 836-846.	4.9	134
67	Exploring global Cryptosporidium emissions to surface water. Science of the Total Environment, 2013, 442, 10-19.	8.0	52
68	Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Climate Change, 2013, 3, 666-672.	18.8	209
69	Hindcasts and Future Projections of Global Inland and Coastal Nitrogen and Phosphorus Loads Due to Finfish Aquaculture. Reviews in Fisheries Science, 2013, 21, 112-156.	2.1	85
70	The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130164.	4.0	1,114
71	Global trends and uncertainties in terrestrial denitrification and N ₂ O emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130112.	4.0	205
72	Mariculture: significant and expanding cause of coastal nutrient enrichment. Environmental Research Letters, 2013, 8, 044026.	5.2	118

#	Article	IF	CITATIONS
73	Global land–ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environmental Research Letters, 2013, 8, 034035.	5.2	68
74	Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20882-20887.	7.1	742
75	Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences, 2013, 10, 1-22.	3.3	177
76	Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proceedings of the United States of America, 2012, 109, 6348-6353.	7.1	486
77	Modeling global nutrient export from watersheds. Current Opinion in Environmental Sustainability, 2012, 4, 195-202.	6.3	41
78	European-scale modelling of groundwater denitrification and associated N2O production. Environmental Pollution, 2012, 165, 67-76.	7.5	30
79	Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature. Current Opinion in Environmental Sustainability, 2011, 3, 359-369.	6.3	63
80	The role of nitrogen in climate change. Current Opinion in Environmental Sustainability, 2011, 3, 279-280.	6.3	12
81	Geographical variation in terrestrial nitrogen budgets across Europe. , 2011, , 317-344.		23
82	Comparison of land nitrogen budgets for European agriculture by various modeling approaches. Environmental Pollution, 2011, 159, 3254-3268.	7.5	99
83	Global Hindcasts and Future Projections of Coastal Nitrogen and Phosphorus Loads Due to Shellfish and Seaweed Aquaculture. Reviews in Fisheries Science, 2011, 19, 331-357.	2.1	71
84	Modeling of HABs and eutrophication: Status, advances, challenges. Journal of Marine Systems, 2010, 83, 262-275.	2.1	171
85	Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling and Software, 2010, 25, 837-853.	4.5	404
86	Impacts of model structure and data aggregation on European wide predictions of nitrogen and green house gas fluxes in response to changes in livestock, land cover, and land management. Journal of Integrative Environmental Sciences, 2010, 7, 145-157.	2.5	14
87	Consequences of the cultivation of energy crops for the global nitrogen cycle. Ecological Applications, 2010, 20, 101-109.	3.8	24
88	Anthropogenic nitrogen autotrophy and heterotrophy of the world's watersheds: Past, present, and future trends. Global Biogeochemical Cycles, 2010, 24, .	4.9	51
89	Preface to special section on Past and Future Trends in Nutrient Export From Global Watersheds and Impacts on Water Quality and Eutrophication. Global Biogeochemical Cycles, 2010, 24, .	4.9	13
90	Impact of future land use and land cover changes on atmospheric chemistry climate interactions. Journal of Geophysical Research, 2010, 115, .	3.3	99

#	Article	IF	CITATIONS
91	Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change, 2010, 20, 428-439.	7.8	533
92	Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures. Global Biogeochemical Cycles, 2010, 24, .	4.9	137
93	N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Global Biogeochemical Cycles, 2010, 24, .	4.9	138
94	Global river nutrient export: A scenario analysis of past and future trends. Global Biogeochemical Cycles, 2010, 24, .	4.9	597
95	Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: A new global model. Global Biogeochemical Cycles, 2010, 24, .	4.9	83
96	Millennium Ecosystem Assessment scenario drivers (1970–2050): Climate and hydrological alterations. Global Biogeochemical Cycles, 2010, 24, .	4.9	98
97	Water and nutrient fluxes from major Mediterranean and Black Sea rivers: Past and future trends and their implications for the basinâ€scale budgets. Global Biogeochemical Cycles, 2010, 24, .	4.9	102
98	Climate benefits of changing diet. Climatic Change, 2009, 95, 83-102.	3.6	640
99	Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Global Change Biology, 2009, 15, 780-780.	9.5	3
100	The contribution of N2O to the greenhouse gas balance of first-generation biofuels. Global Change Biology, 2009, 16, 2400-2400.	9.5	0
101	Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model. Global Biogeochemical Cycles, 2009, 23, .	4.9	103
102	Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Global Biogeochemical Cycles, 2009, 23, .	4.9	289
103	Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochemical Cycles, 2009, 23, .	4.9	404
104	From forest to waste: Assessment of the Brazilian soybean chain, using nitrogen as a markerâ~†. Agriculture, Ecosystems and Environment, 2008, 128, 185-197.	5.3	55
105	Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmospheric Environment, 2008, 42, 6067-6077.	4.1	205
106	A framework to identify appropriate spatial and temporal scales for modeling N flows from watersheds. Ecological Modelling, 2008, 212, 256-272.	2.5	6
107	Global N removal by freshwater aquatic systems using a spatially distributed, withinâ€basin approach. Global Biogeochemical Cycles, 2008, 22, .	4.9	152
108	Surface N Balances in Agricultural Crop Production Systems in China for the Period 1980–2015. Pedosphere, 2008, 18, 304-315.	4.0	28

#	Article	IF	CITATIONS
109	Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. Journal of Land Use Science, 2007, 2, 167-190.	2.2	85
110	DENITRIFICATION ACROSS LANDSCAPES AND WATERSCAPES: A SYNTHESIS. , 2006, 16, 2064-2090.		1,326
111	The role of nitrogen in world food production and environmental sustainability. Agriculture, Ecosystems and Environment, 2006, 116, 4-14.	5.3	160
112	N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 2006, 74, 207-228.	2.2	815
113	World livestock and crop production systems, land use and environment between 1970 and 2030. Environment & Policy, 2006, , 75-89.	0.4	6
114	Surface N balances and reactive N loss to the environment from global intensive agricultural production systems for the period 1970–2030. Science in China Series C: Life Sciences, 2005, 48, 767-779.	1.3	28
115	Denitrification in Agricultural Soils: Summarizing Published Data and Estimating Global Annual Rates. Nutrient Cycling in Agroecosystems, 2005, 72, 267-278.	2.2	208
116	Exploring changes in world ruminant production systems. Agricultural Systems, 2005, 84, 121-153.	6.1	274
117	Exploring changes in river nitrogen export to the world's oceans. Global Biogeochemical Cycles, 2005, 19, .	4.9	162
118	Dissolved inorganic phosphorus export to the coastal zone: Results from a spatially explicit, global model. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	70
119	Estimation of global river transport of sediments and associated particulate C, N, and P. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	222
120	A comparison of global spatial distributions of nitrogen inputs for nonpoint sources and effects on river nitrogen export. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	28
121	Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Clobal Nutrient Export from Watersheds (NEWS) models and their application. Clobal Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	567
122	Surface N balances and reactive N loss to the environment from global intensive agricultural production systems for the period 1970-2030. Science in China Series C: Life Sciences, 2005, 48 Spec No, 767-79.	1.3	3
123	The land-use projections and resulting emissions in the IPCC SRES scenarios scenarios as simulated by the IMAGE 2.2 model. Geo Journal, 2004, 61, 381-393.	3.1	102
124	Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	173
125	Estimation of global NH3volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogeochemical Cycles, 2002, 16, 8-1-8-14.	4.9	369

126 The European Nitrogen Case. Ambio, 2002, 31, 72-78.

5.5 64

#	Article	IF	CITATIONS
127	Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 2002, 16, 6-1-6-13.	4.9	698
128	Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 2002, 16, 28-1-28-9.	4.9	512
129	Clobal patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: Recent conditions and future projections. Estuaries and Coasts, 2002, 25, 640-655.	1.7	251
130	A Global Analysis of Acidification and Eutrophication of Terrestrial Ecosystems. Water, Air, and Soil Pollution, 2002, 141, 349-382.	2.4	320
131	The European nitrogen case. Ambio, 2002, 31, 72-8.	5.5	9
132	Global Pollution of Surface Waters from Point and Nonpoint Sources of Nitrogen. Scientific World Journal, The, 2001, 1, 632-641.	2.1	28
133	Land Cover Changes as a Result of Environmental Restrictions on Nitrate Leaching in Dairy Farming. Environmental Modeling and Assessment, 2001, 6, 101-109.	2.2	7
134	Testing hypotheses on global emissions of nitrous oxide using atmospheric models. Chemosphere, 2000, 2, 475-492.	1.2	16
135	Greenhouse Gas Emissions in an Equity-, Environment- and Service-Oriented World. Technological Forecasting and Social Change, 2000, 63, 137-174.	11.6	47
136	Towards reliable global bottom-up estimates of temporal and spatial patterns of emissions of trace gases and aerosols from land-use related and natural sources. Developments in Atmospheric Science, 1999, 24, 3-26.	0.2	12
137	Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1°×1°. Environmental Science and Policy, 1999, 2, 241-263.	4.9	162
138	Modelling base cations in Europe—sources, transport and deposition of calcium. Atmospheric Environment, 1999, 33, 2241-2256.	4.1	30
139	Closing the global N2O budget: A retrospective analysis 1500-1994. Global Biogeochemical Cycles, 1999, 13, 1-8.	4.9	418
140	Working group report How can we best define functional types and integrate state variables and properties in time and space?. Developments in Atmospheric Science, 1999, 24, 153-167.	0.2	0
141	Global use and trade of feedstuffs and consequences for the nitrogen cycle. Nutrient Cycling in Agroecosystems, 1998, 52, 261-267.	2.2	46
142	Nitrogen oxides and tropical agriculture. Nature, 1998, 392, 866-867.	27.8	175
143	Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environmental Pollution, 1998, 102, 135-148.	7.5	340
144	Nitrate leaching in dairy farming: economic effects of environmental restrictions. Environmental Pollution, 1998, 102, 755-761.	7.5	7

#	Article	IF	CITATIONS
145	Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. , 1998, , 135-148.		5
146	A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles, 1997, 11, 561-587.	4.9	1,002
147	Estimations of global no, emissions and their uncertainties. Atmospheric Environment, 1997, 31, 1735-1749.	4.1	285
148	Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries. Atmospheric Environment, 1997, 31, 4095-4102.	4.1	81
149	Testing high-resolution nitrous oxide emission estimates against observations using an atmospheric transport model. Global Biogeochemical Cycles, 1996, 10, 307-318.	4.9	37
150	Influence of Cattle Wastes on Nitrous Oxide and Methane Fluxes in Pasture Land. Journal of Environmental Quality, 1996, 25, 1366-1370.	2.0	110
151	Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 1996, 46, 53-70.	2.2	702
152	Overview of IMAGE 2.0: An integrated model of climate change and the global environment. Studies in Environmental Science, 1995, 65, 1395-1399.	0.0	2
153	Assessment report on NRP subtheme "gGeenhouse Gases― Studies in Environmental Science, 1995, 65, 453-533.	0.0	0
154	Discussion on the NRP assessment report "Greenhouse Gases― Studies in Environmental Science, 1995, , 535-539.	0.0	0
155	Testing high resolution nitroux oxide emission estimates against observations using an atmospheric transport model. Studies in Environmental Science, 1995, , 613-618.	0.0	0
156	Emission database for global atmospheric research (EDGAR): Version 2.0. Studies in Environmental Science, 1995, 65, 651-659.	0.0	9
157	Uncertainties in the global source distribution of nitrous oxide. Journal of Geophysical Research, 1995, 100, 2785.	3.3	316
158	Modeling the global society-biosphere-climate system: Part 2: Computed scenarios. Water, Air, and Soil Pollution, 1994, 76, 37-78.	2.4	42
159	Computing land use emissions of greenhouse gases. Water, Air, and Soil Pollution, 1994, 76, 231-258.	2.4	68
160	Emission database for global atmospheric research (Edgar). Environmental Monitoring and Assessment, 1994, 31-31, 93-106.	2.7	93
161	Tropical Rain Forest Conversion to Pasture: Changes in Vegetation and Soil Properties. , 1994, 4, 363-377.		266
162	Emission Database for Global Atmospheric Research (EDGAR). , 1994, , 93-106.		10

#	Article	IF	CITATIONS
163	Computing Land use Emissions of Greenhouse Gases. , 1994, , 231-258.		16
164	Modeling the Global Society-Biosphere-Climate System: Part 2: Computed Scenarios. , 1994, , 37-78.		0
165	A compilation of inventories of emissions to the atmosphere. Global Biogeochemical Cycles, 1993, 7, 1-26.	4.9	115
166	Global analysis of the potential for N ₂ O production in natural soils. Global Biogeochemical Cycles, 1993, 7, 557-597.	4.9	195
167	Agronomic aspects of wetland rice cultivation and associated methane emissions. Biogeochemistry, 1991, 15, 65.	3.5	83
168	Chapter 2 Inputs to Climatic Change by Soil and Agriculture Related Activities. Developments in Soil Science, 1990, , 15-30.	0.5	6
169	Conference on soils and the greenhouse effect. Land Use Policy, 1990, 7, 184-185.	5.6	36
170	Land use related sources of greenhouse gases. Land Use Policy, 1990, 7, 154-164.	5.6	20
171	Modelling soil organic matter decomposition and rainfall erosion in two tropical soils after forest clearing for permanent agriculture. Land Degradation and Development, 1989, 1, 125-140.	3.9	13