Graham A Worth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3374536/publications.pdf

Version: 2024-02-01

201674 155660 3,048 73 27 55 citations h-index g-index papers 97 97 97 2232 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	BEYOND BORN-OPPENHEIMER: Molecular Dynamics Through a Conical Intersection. Annual Review of Physical Chemistry, 2004, 55, 127-158.	10.8	694
2	Quantum molecular dynamics: propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree method. Theoretical Chemistry Accounts, 2003, 109, 251-267.	1.4	500
3	Full quantum mechanical molecular dynamics using Gaussian wavepackets. Chemical Physics Letters, 2003, 368, 502-508.	2.6	170
4	Multiconfigurational system-bath dynamics using Gaussian wave packets: Energy relaxation and decoherence induced by a finite-dimensional bath. Journal of Chemical Physics, 2003, 119, 5364-5378.	3.0	126
5	Exploring the sloped-to-peaked S2/S1 seam of intersection of thymine with electronic structure and direct quantum dynamics calculations. Physical Chemistry Chemical Physics, 2010, 12, 4949.	2.8	83
6	Nonadiabatic Dynamics:Â A Comparison of Surface Hopping Direct Dynamics with Quantum Wavepacket Calculations. Journal of Physical Chemistry A, 2003, 107, 621-631.	2.5	76
7	Conical intersections: A perspective on the computation of spectroscopic Jahn–Teller parameters and the degenerate â€̃intersection space'. Physical Chemistry Chemical Physics, 2005, 7, 2100.	2.8	67
8	Excitedâ€state dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 460-475.	14.6	64
9	Controlling S ₁ /S _O Decay and the Balance between Photochemistry and Photostability in Benzene: A Direct Quantum Dynamics Study. Journal of Physical Chemistry A, 2008, 112, 13017-13027.	2.5	60
10	Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study. Journal of Chemical Physics, 2015, 142, 074302.	3.0	59
11	A Practical Diabatisation Scheme for Use with the Direct-Dynamics Variational Multi-Configuration Gaussian Method. Journal of Physical Chemistry A, 2015, 119, 12457-12470.	2.5	54
12	Direct quantum dynamics using variational multi-configuration Gaussian wavepackets. Chemical Physics Letters, 2006, 432, 604-609.	2.6	52
13	Wavepacket dynamics study of Cr(CO)5 after formation by photodissociation: relaxation through an (E ⊕ A) ⊗ e Jahn–Teller conical intersection. Molecular Physics, 2006, 104, 1095-1105.	1.7	52
14	Controlling the mechanism of fulvene S1/S0 decay: switching off the stepwise population transfer. Physical Chemistry Chemical Physics, 2010, 12, 15725.	2.8	50
15	Towards converging non-adiabatic direct dynamics calculations using frozen-width variational Gaussian product basis functions. Journal of Chemical Physics, 2012, 137, 22A548.	3.0	50
16	Quantics: A general purpose package for Quantum molecular dynamics simulations. Computer Physics Communications, 2020, 248, 107040.	7.5	46
17	A Straightforward Method of Analysis for Direct Quantum Dynamics: Application to the Photochemistry of a Model Cyanine ⟨sup⟩â€⟨/sup⟩. Journal of Physical Chemistry A, 2010, 114, 8713-8729.	2.5	44
18	The molecular dissociation of formaldehyde at medium photoexcitation energies: A quantum chemistry and direct quantum dynamics study. Journal of Chemical Physics, 2009, 131, 144301.	3.0	41

#	Article	IF	CITATIONS
19	Automatic generation of active coordinates for quantum dynamics calculations: Application to the dynamics of benzene photochemistry. Journal of Chemical Physics, 2008, 128, 124307.	3.0	39
20	Converged quantum dynamics with modified Shepard interpolation and Gaussian wave packets. Chemical Physics Letters, 2010, 489, 242-247.	2.6	38
21	Unravelling the Role of an Aqueous Environment on the Electronic Structure and Ionization of Phenol Using Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 678-682.	4.6	36
22	A model Hamiltonian to simulate the complex photochemistry of benzene II. Journal of Chemical Physics, 2009, 131, 064303.	3.0	34
23	Dynamic stark control: model studies based on the photodissociation of IBr. Faraday Discussions, 2011, 153, 275.	3.2	34
24	Insights into the Complex Photophysics and Photochemistry of the Simplest Nitroaromatic Compound: A CASPT2//CASSCF Study on Nitrobenzene. Journal of Chemical Theory and Computation, 2017, 13, 2777-2788.	5. 3	34
25	Multi-state non-adiabatic direct-dynamics on propagated diabatic potential energy surfaces. Chemical Physics Letters, 2017, 683, 606-612.	2.6	31
26	The Ehrenfest method with fully quantum nuclear motion (Qu-Eh): Application to charge migration in radical cations. Journal of Chemical Physics, 2018, 149, 094108.	3.0	30
27	Using time-resolved photoelectron spectroscopy to unravel the electronic relaxation dynamics of photoexcited molecules. Chemical Society Reviews, 2018, 47, 309-321.	38.1	27
28	A full-dimensional coupled-surface study of the photodissociation dynamics of ammonia using the multiconfiguration time-dependent Hartree method. Journal of Chemical Physics, 2011, 135, 044311.	3.0	26
29	Ultrafast Photoinitiated Long-Range Electron Transfer in Cyclophane-Bridged Zincporphyrinâ^'Quinone Complexes via Conical Intersections. Journal of Physical Chemistry B, 2004, 108, 19049-19055.	2.6	24
30	ortho and para chromophores of green fluorescent protein: controlling electron emission and internal conversion. Chemical Science, 2017, 8, 1621-1630.	7.4	24
31	Allene and pentatetraene cations as models for intramolecular charge transfer: Vibronic coupling Hamiltonian and conical intersections. Journal of Chemical Physics, 2005, 122, 144320.	3.0	22
32	A complete description of tunnelling using direct quantum dynamics simulation: Salicylaldimine proton transfer. Journal of Chemical Physics, 2015, 143, 084121.	3.0	22
33	Guiding the time-evolution of a molecule: optical control by computer. Physical Chemistry Chemical Physics, 2010, 12, 15570.	2.8	21
34	Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study. Journal of Chemical Physics, 2016, 144, 014309.	3.0	21
35	Non-radiative relaxation dynamics of pyrrole following excitation in the range 249.5–200 nm. Chemical Physics Letters, 2017, 683, 179-185.	2.6	19
36	Identification of a new electron-transfer relaxation pathway in photoexcited pyrrole dimers. Nature Communications, 2016, 7, 11357.	12.8	15

#	Article	IF	CITATIONS
37	Optimal control by computer. Annual Reports on the Progress of Chemistry Section C, 2013, 109, 113.	4.4	14
38	Photoelectron spectroscopy of isolated luciferin and infraluciferin anions <i>in vacuo</i> : competing photodetachment, photofragmentation and internal conversion. Physical Chemistry Chemical Physics, 2017, 19, 22711-22720.	2.8	14
39	Systematic and variational truncation of the configuration space in the multiconfiguration time-dependent Hartree method: The MCTDH[<i>n</i>] hierarchy. Journal of Chemical Physics, 2020, 152, 084101.	3.0	13
40	The role of vibronic coupling in the electronic spectroscopy of maleimide: a multi-mode and multi-state quantum dynamics study. Physical Chemistry Chemical Physics, 2020, 22, 25272-25283.	2.8	12
41	How important is roaming in the photodegradation of nitrobenzene?. Physical Chemistry Chemical Physics, 2020, 22, 15945-15952.	2.8	12
42	Improved algorithm for the direct dynamics variational multi-configurational Gaussian method. Journal of Chemical Physics, 2021, 154, 124127.	3.0	12
43	Mixed-quantum-classical or fully-quantized dynamics? A unified code to compare methods. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200386.	3.4	11
44	Curve crossing in a manifold of coupled electronic states: direct quantum dynamics simulations of formamide. Faraday Discussions, 2018, 212, 191-215.	3.2	10
45	Similar chemical structures, dissimilar triplet quantum yields: a CASPT2 model rationalizing the trend of triplet quantum yields in nitroaromatic systems. Physical Chemistry Chemical Physics, 2019, 21, 10514-10522.	2.8	10
46	MR-MCTDH[$\langle i \rangle n \langle i \rangle$]: Flexible Configuration Spaces and Nonadiabatic Dynamics within the MCTDH[$\langle i \rangle n \langle i \rangle$] Framework. Journal of Chemical Theory and Computation, 2020, 16, 4087-4097.	5.3	10
47	Time-Resolved Photoelectron Spectroscopy Studies of Isoxazole and Oxazole. Journal of Physical Chemistry A, 2020, 124, 3984-3992.	2.5	10
48	Multi-layer Gaussian-based multi-configuration time-dependent Hartree (ML-GMCTDH) simulations of ultrafast charge separation in a donor–acceptor complex. Journal of Chemical Physics, 2021, 154, 144106.	3.0	10
49	Generating symmetry-adapted bases for non-Abelian point groups to be used in vibronic coupling Hamiltonians. Chemical Physics, 2015, 460, 125-134.	1.9	9
50	Control of nuclear dynamics in the benzene cation by electronic wavepacket composition. Communications Chemistry, 2021, 4, .	4.5	9
51	Direct nonadiabatic quantum dynamics simulations of the photodissociation of phenol. Physical Chemistry Chemical Physics, 2021, 23, 23684-23695.	2.8	9
52	On the Intrinsically Low Quantum Yields of Pyrimidine DNA Photodamages: Evaluating the Reactivity of the Corresponding Minimum Energy Crossing Points. Journal of Physical Chemistry Letters, 2020, 11, 4984-4989.	4.6	8
53	Unlocking the Double Bond in Protonated Schiff Bases by Coherent Superposition of S ₁ and S ₂ . Journal of Physical Chemistry Letters, 2021, 12, 5639-5643.	4.6	8
54	Threshold Photoelectron Spectrum of Cyclobutadiene: Comparison with Time-Dependent Wavepacket Simulations. Journal of Physical Chemistry Letters, 2021, 12, 6901-6906.	4.6	8

#	Article	IF	CITATIONS
55	The time-resolved photoelectron spectrum of toluene using a perturbation theory approach. Journal of Chemical Physics, 2014, 141, 244115.	3.0	7
56	Two-dimensional vibronic spectroscopy of molecular aggregates: Trimers, dimers, and monomers. Journal of Chemical Physics, 2016, 145, 084305.	3.0	6
57	Shining light on the electronic structure and relaxation dynamics of the isolated oxyluciferin anion. Physical Chemistry Chemical Physics, 2020, 22, 19022-19032.	2.8	5
58	Field modified spin–orbit potential curves of IBr. Preliminary dynamical results. Physical Chemistry Chemical Physics, 2019, 21, 14429-14439.	2.8	4
59	Micro-Solvated DMABN: Excited State Quantum Dynamics and Dual Fluorescence Spectra. Molecules, 2021, 26, 7247.	3.8	4
60	Modelling the vibrationally mediated photo-dissociation of acetylene. Physical Chemistry Chemical Physics, 2017, 19, 29483-29497.	2.8	3
61	The quantum-Ehrenfest method with the inclusion of an IR pulse: Application to electron dynamics of the allene radical cation. Journal of Chemical Physics, 2020, 153, 031102.	3.0	3
62	How electronic superpositions drive nuclear motion following the creation of a localized hole in the glycine radical cation . Journal of Chemical Physics, 0, , .	3.0	3
63	Electron transfer in photoexcited pyrrole dimers. Journal of Chemical Physics, 2019, 151, 164304.	3.0	2
64	Quantum dynamics with ab initio potentials. Journal of Chemical Physics, 2021, 155, 080401.	3.0	2
65	Direct Dynamics with Quantum Nuclei. , 0, , 111-129.		1
66	The Road to MCTDH., 0,, 9-15.		1
67	Cu+NO scattering quantum dynamics. International Journal of Mass Spectrometry, 2014, 365-366, 121-127.	1.5	1
68	Precise characterisation of isolated molecules: general discussion. Faraday Discussions, 2018, 212, 137-155.	3.2	1
69	Shared Memory Parallelization of the Multiconfiguration Time-Dependent Hartree Method. , 0, , 149-160.		0
70	Analysis of the Propagated Wavepacket., 0,, 41-55.		0
71	Multidimensional Non-Adiabatic Dynamics. , 0, , 209-230.		0
72	Iterative Diagonalization of Operators. , 0, , 69-71.		О

#	Article	IF	CITATIONS
73	Quantum dynamics of isolated molecules: general discussion. Faraday Discussions, 2018, 212, 281-306.	3.2	0