Yuan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3374366/publications.pdf Version: 2024-02-01

YUAN HUANC

#	Article	IF	CITATIONS
1	Estimation of the zero-pressure computational start shape of atherosclerotic plaques: Improving the backward displacement method with deformation gradient tensor. Journal of Biomechanics, 2022, 131, 110910.	2.1	0
2	Association of Collagen, Elastin, Glycosaminoglycans, and Macrophages With Tissue Ultimate Material Strength and Stretch in Human Thoracic Aortic Aneurysms: A Uniaxial Tension Study. Journal of Biomechanical Engineering, 2022, 144, .	1.3	3
3	Biomechanical insight of the stent-induced thrombosis following flow-diverting strategy in the management of complicated aortic aneurysms. International Angiology, 2021, 40, 52-59.	0.9	1
4	Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events. Scientific Reports, 2021, 11, 3499.	3.3	26
5	Study on the association of wall shear stress and vessel structural stress with atherosclerosis: An experimental animal study. Atherosclerosis, 2021, 320, 38-46.	0.8	5
6	High-intensity statin treatment is associated with reduced plaque structural stress and remodelling of artery geometry and plaque architecture. European Heart Journal Open, 2021, 1, .	2.3	3
7	Heterogeneity of Plaque Structural Stress Is Increased in Plaques Leading to MACE. JACC: Cardiovascular Imaging, 2020, 13, 1206-1218.	5.3	40
8	Greater aortic inflammation and calcification in abdominal aortic aneurysmal disease than atherosclerosis: a prospective matched cohort study. Open Heart, 2020, 7, e001141.	2.3	9
9	Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma. European Radiology, 2019, 29, 4718-4729.	4.5	17
10	Low perfusion compartments in glioblastoma quantified by advanced magnetic resonance imaging and correlated with patient survival. Radiotherapy and Oncology, 2019, 134, 17-24.	0.6	15
11	Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. European Heart Journal, 2019, 40, 1411-1422.	2.2	68
12	Bayesian Inference-Based Estimation of Normal Aortic, Aneurysmal and Atherosclerotic Tissue Mechanical Properties: From Material Testing, Modeling and Histology. IEEE Transactions on Biomedical Engineering, 2019, 66, 2269-2278.	4.2	8
13	The role of porosity and 3D cross-stent configuration of multiple overlapping uncovered stents in the management of complex aortic aneurysms – Insights from haemodynamics. Medicine in Novel Technology and Devices, 2019, 3, 100020.	1.6	1
14	Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method. , 2018, 10574, .		11
15	Plaque Rupture in Coronary Atherosclerosis Is Associated With Increased Plaque Structural Stress. JACC: Cardiovascular Imaging, 2017, 10, 1472-1483.	5.3	69
16	Influence of overlapping pattern of multiple overlapping uncovered stents on the local mechanical environment: A patient-specific parameter study. Journal of Biomechanics, 2017, 60, 188-196.	2.1	9
17	Maternal Blood Pressure Rise During Pregnancy and Offspring Obesity Risk at 4 to 7 Years Old: The Jiaxing Birth Cohort. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4315-4322.	3.6	22
18	High Structural Stress and Presence of Intraluminal Thrombus Predict Abdominal Aortic Aneurysm ¹⁸ F-FDG Uptake. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	22

Yuan Huang

#	Article	IF	CITATIONS
19	Plaque Structural Stress Estimations Improve Prediction of Future Major Adverse Cardiovascular Events After Intracoronary Imaging. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	55
20	A uni-extension study on the ultimate material strength and extreme extensibility of atherosclerotic tissue in human carotid plaques. Journal of Biomechanics, 2015, 48, 3859-3867.	2.1	22
21	Layer- and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study. Annals of Biomedical Engineering, 2015, 43, 2745-2759.	2.5	38
22	Material properties of components in human carotid atherosclerotic plaques: A uniaxial extension study. Acta Biomaterialia, 2014, 10, 5055-5063.	8.3	81
23	Coronary Plaque Structural Stress Is Associated With Plaque Composition and Subtype and Higher in Acute Coronary Syndrome. Circulation: Cardiovascular Imaging, 2014, 7, 461-470.	2.6	78
24	The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: Comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses. Journal of Biomechanics, 2014, 47, 1465-1471.	2.1	35
25	In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture. BioMedical Engineering OnLine, 2013, 12, 36.	2.7	17
26	Non-uniform shrinkage for obtaining computational start shape for in-vivo MRI-based plaque vulnerability assessment. Journal of Biomechanics, 2011, 44, 2316-2319.	2.1	15