
Robert Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3373523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Pseudomonas</i> genomes: diverse and adaptable. FEMS Microbiology Reviews, 2011, 35, 652-680.	8.6	765
2	Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes The GenBank accession numbers for the sequences determined in this work are: gyrB, D37926, D37297, D86005–D86019 and AB039381–AB039492; rpoD, D86020–D860 AB039493–AB039624 Microbiology (United Kingdom), 2000, 146, 2385-2394.	03 6⁻⁸nd	458
3	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	9.6	370
4	Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10875-10880.	7.1	325
5	Whole-Genome Sequence Analysis of Pseudomonas syringae pv. phaseolicola 1448A Reveals Divergence among Pathovars in Genes Involved in Virulence and Transposition. Journal of Bacteriology, 2005, 187, 6488-6498.	2.2	301
6	Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO Journal, 2000, 19, 3204-3214.	7.8	213
7	Bacterial Polysaccharides Suppress Induced Innate Immunity by Calcium Chelation. Current Biology, 2008, 18, 1078-1083.	3.9	212
8	Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant and Soil, 2016, 405, 381-396.	3.7	128
9	The influence of the accessory genome on bacterial pathogen evolution. Mobile Genetic Elements, 2011, 1, 55-65.	1.8	125
10	Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environmental Microbiology, 2007, 9, 425-434.	3.8	122
11	Exposure to Host Resistance Mechanisms Drives Evolution of Bacterial Virulence in Plants. Current Biology, 2005, 15, 2230-2235.	3.9	111
12	Comparative Genome Analysis Provides Insights into the Evolution and Adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS ONE, 2010, 5, e10224.	2.5	104
13	The biosurfactant viscosin produced by <scp><i>P</i></scp> <i>seudomonas fluorescens</i> â€ <scp>SBW</scp> 25 aids spreading motility and plant growth promotion. Environmental Microbiology, 2014, 16, 2267-2281.	3.8	103
14	Early changes in apoplast composition associated with defence and disease in interactions between <i>Phaseolus vulgaris</i> and the halo blight pathogen <i>Pseudomonas syringae</i> Pv. phaseolicola. Plant, Cell and Environment, 2016, 39, 2172-2184.	5.7	102
15	The roles of plasmids in phytopathogenic bacteria: mobile arsenals?. Microbiology (United Kingdom), 2001, 147, 763-780.	1.8	96
16	Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?. European Journal of Plant Pathology, 2019, 155, 711-729.	1.7	87
17	<i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> : from â€~has bean' to supermodel. Molecular Plant Pathology, 2011, 12, 617-627.	4.2	85
18	Bacterial Evolution by Genomic Island Transfer Occurs via DNA Transformation In Planta. Current Biology, 2009, 19, 1586-1590.	3.9	82

#	Article	IF	CITATIONS
19	Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18247-18252.	7.1	79
20	Evolution of microbial virulence: the benefits of stress. Trends in Genetics, 2007, 23, 293-300.	6.7	77
21	Microbeâ€associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Molecular Plant Pathology, 2009, 10, 375-387.	4.2	76
22	Hcp2, a Secreted Protein of the Phytopathogen Pseudomonas syringae pv. Tomato DC3000, Is Required for Fitness for Competition against Bacteria and Yeasts. Journal of Bacteriology, 2012, 194, 4810-4822.	2.2	76
23	Pathogenicity and other genomic islands in plant pathogenic bacteria. Molecular Plant Pathology, 2003, 4, 407-420.	4.2	70
24	Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv. pisi The GenBank accession numbers for the sequences determined in this work are AJ277495 and AJ277496 Microbiology (United Kingdom), 2001, 147, 1171-1182.	1.8	63
25	Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science, 2015, 347, 1014-1017.	12.6	61
26	Bacterial pathogen evolution: breaking news. Trends in Genetics, 2011, 27, 32-40.	6.7	55
27	Comparative genomics of <i>Pseudomonas syringae</i> reveals convergent gene gain and loss associated with specialization onto cherry (<i>Prunus avium</i>). New Phytologist, 2018, 219, 672-696.	7.3	52
28	Genetic Characterization of Pseudomonas fluorescens SBW25 rsp Gene Expression in the Phytosphere and In Vitro. Journal of Bacteriology, 2005, 187, 8477-8488.	2.2	48
29	<i>In planta</i> conditions induce genomic changes in <i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> . Molecular Plant Pathology, 2011, 12, 167-176.	4.2	47
30	The Stealth Episome: Suppression of Gene Expression on the Excised Genomic Island PPHGI-1 from Pseudomonas syringae pv. phaseolicola. PLoS Pathogens, 2011, 7, e1002010.	4.7	47
31	Excision from tRNA genes of a large chromosomal region, carrying avrPphB, associated with race change in the bean pathogen, Pseudomonas syringae pv. phaseolicola. Molecular Microbiology, 2000, 38, 186-197.	2.5	46
32	Wheat seed embryo excision enables the creation of axenic seedlings and Koch's postulates testing of putative bacterial endophytes. Scientific Reports, 2016, 6, 25581.	3.3	45
33	Phage biocontrol to combat <i>Pseudomonas syringae</i> pathogens causing disease in cherry. Microbial Biotechnology, 2020, 13, 1428-1445.	4.2	44
34	Phylogenetic Analysis of the pPT23A Plasmid Family of Pseudomonas syringae. Applied and Environmental Microbiology, 2007, 73, 1287-1295.	3.1	41
35	Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiology, 2014, 14, 163.	3.3	41
36	Characterization of the pathogenicity of strains of <i>Pseudomonas syringae</i> towards cherry and plum. Plant Pathology, 2018, 67, 1177-1193.	2.4	40

ROBERT JACKSON

#	Article	IF	CITATIONS
37	Location and activity of members of a family ofvirPphAhomologues in pathovars ofPseudomonas syringaeandP. savastanoi. Molecular Plant Pathology, 2002, 3, 205-216.	4.2	38
38	Pseudomonas syringae pv. coryli, the Causal Agent of Bacterial Twig Dieback of Corylus avellana. Phytopathology, 2005, 95, 1316-1324.	2.2	37
39	Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Frontiers in Microbiology, 2016, 7, 1088.	3.5	34
40	Molecular characterization of avrPphD, a widely-distributed gene from Pseudomonas syringae pv.phaseolicola involved in non-host recognition by pea (Pisum sativum). Physiological and Molecular Plant Pathology, 2001, 58, 55-62.	2.5	33
41	Changes in Race-Specific Virulence in Pseudomonas syringae pv. phaseolicola Are Associated with a Chimeric Transposable Element and Rare Deletion Events in a Plasmid-Borne Pathogenicity Island. Applied and Environmental Microbiology, 2005, 71, 3778-3785.	3.1	30
42	A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes. Nature Communications, 2021, 12, 6092.	12.8	27
43	First steps in experimental cancer evolution. Evolutionary Applications, 2013, 6, 535-548.	3.1	25
44	Bacterial genomes: evolution of pathogenicity. Current Opinion in Plant Biology, 2011, 14, 385-391.	7.1	23
45	Miniature Transposable Sequences Are Frequently Mobilized in the Bacterial Plant Pathogen Pseudomonas syringae pv. phaseolicola. PLoS ONE, 2011, 6, e25773.	2.5	23
46	Editorial on plants as alternative hosts for human and animal pathogens. Frontiers in Microbiology, 2015, 6, 397.	3.5	22
47	A low frequency persistent reservoir of a genomic island in a pathogen population ensures island survival and improves pathogen fitness in a susceptible host. Environmental Microbiology, 2016, 18, 4144-4152.	3.8	22
48	Rapid, automated detection of stem canker symptoms in woody perennials using artificial neural network analysis. Plant Methods, 2015, 11, 57.	4.3	21
49	Confocal Imaging of Pseudomonas syringae pv. phaseolicola Colony Development in Bean Reveals Reduced Multiplication of Strains Containing the Genomic Island PPHGI-1. Molecular Plant-Microbe Interactions, 2010, 23, 1294-1302.	2.6	17
50	Evidence that nematodes may vector the soft rotâ€causing enterobacterial phytopathogens. Plant Pathology, 2014, 63, 747-757.	2.4	17
51	Phylogenetic Evidence for a Diversification ofPseudomonas syringaepv.pisiRace 4 Strains into Two Distinct Lineages. Phytopathology, 1996, 86, 1051.	2.2	17
52	Evidence for the mobility of an avirulence gene, avrPpiA1 , between the chromosome and plasmids of races of Pseudomonas syringae pv. pisi. Molecular Plant Pathology, 2000, 1, 195-199.	4.2	16
53	Development and Application of In Vivo Expression Technology (IVET) for Analysing Microbial Gene Expression in Complex Environments. Infectious Disorders - Drug Targets, 2006, 6, 207-240.	0.8	16
54	Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. Plant Pathology, 2020, 69, 962-978.	2.4	16

ROBERT JACKSON

#	Article	lF	CITATIONS
55	Natural selection on crosstalk between gene regulatory networks facilitates bacterial adaptation to novel environments. Current Opinion in Microbiology, 2022, 67, 102140.	5.1	14
56	An optimized method for the extraction of bacterial mRNA from plant roots infected with Escherichia coli O157:H7. Frontiers in Microbiology, 2014, 5, 286.	3.5	13
57	Draft genome sequence of Pseudomonas corrugata, a phytopathogenic bacterium with potential industrial applications. Journal of Biotechnology, 2014, 175, 65-66.	3.8	12
58	The Use of Bioluminescence for Monitoring in planta Growth Dynamics of a Pseudomonas syringae Plant Pathogen. European Journal of Plant Pathology, 2006, 115, 363-366.	1.7	11
59	Influence of the <i>Photorhabdus luminescens</i> Phosphomannose Isomerase Gene, <i>manA</i> , on Mannose Utilization, Exopolysaccharide Structure, and Biofilm Formation. Applied and Environmental Microbiology, 2011, 77, 776-785.	3.1	10
60	Is there sufficient Ensifer and Rhizobium species diversity in UK farmland soils to support red clover (Trifolium pratense), white clover (T. repens), lucerne (Medicago sativa) and black medic (M.) Tj ETQq0 0 0 rgB	Г/О <mark>иев</mark> lock	2 10176 50 537
61	Supercoiling of an excised genomic island represses effector gene expression to prevent activation of host resistance. Molecular Microbiology, 2018, 110, 444-454.	2.5	10
62	Isolation, Characterisation and Experimental Evolution of Phage that Infect the Horse Chestnut Tree Pathogen, Pseudomonas syringae pv. aesculi. Current Microbiology, 2020, 77, 1438-1447.	2.2	10
63	The Identification of Genes Important in Pseudomonas syringae pv. phaseolicola Plant Colonisation Using In Vitro Screening of Transposon Libraries. PLoS ONE, 2015, 10, e0137355.	2.5	10
64	The <scp><i>rulB</i></scp> gene of plasmid <scp>pWW</scp> 0 is a hotspot for the siteâ€specific insertion of integronâ€like elements found in the chromosomes of environmental <scp><i>P</i></scp> <i>seudomonas fluorescens</i> group bacteria. Environmental Microbiology, 2014, 16, 2374-2388.	3.8	9
65	Editorial: Environmental Bacteriophages: From Biological Control Applications to Directed Bacterial Evolution. Frontiers in Microbiology, 2019, 10, 1830.	3.5	8
66	Seeing the forest for the trees: Use of phages to treat bacterial tree diseases. Plant Pathology, 2021, 70, 1987-2004.	2.4	7
67	A dispensable region of the chromosome which is associated with an avirulence gene in Pseudomonas syringae pv. pisi. Microbiology (United Kingdom), 1999, 145, 135-141.	1.8	6
68	Coping with Environmental Eukaryotes; Identification of Pseudomonas syringae Genes during the Interaction with Alternative Hosts or Predators. Microorganisms, 2018, 6, 32.	3.6	6
69	The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. Microbiology (United) Tj ETQq	1 1 0.7843 1.8	14 rgBT /Ove
70	Identification of novel aphidâ€killing bacteria to protect plants. Microbial Biotechnology, 2022, 15, 1203-1220.	4.2	6
71	Identifying resistance in wild and ornamental cherry towards bacterial canker caused by <i>Pseudomonas syringae</i> . Plant Pathology, 2022, 71, 949-965.	2.4	6
72	Testing temperatureâ€induced proteomic changes in the plantâ€associated bacterium <i>Pseudomonas fluorescens</i> SBW25. Environmental Microbiology Reports, 2010, 2, 396-402.	2.4	5

Robert Jackson

#	Article	IF	CITATIONS
73	Rapid impact of <i>Impatiens glandulifera</i> control on above―and belowground invertebrate communities. Weed Research, 2021, 61, 35-44.	1.7	4
74	Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages. Viruses, 2020, 12, 1286.	3.3	3
75	Transposon Mutagenesis of Pseudomonas syringae Pathovars syringae and morsprunorum to Identify Genes Involved in Bacterial Canker Disease of Cherry. Microorganisms, 2021, 9, 1328.	3.6	3
76	Scaling-up to understand tree–pathogen interactions: A steep, tough climb or a walk in the park?. Current Opinion in Plant Biology, 2022, 68, 102229.	7.1	3
77	Genotypic and phenotypic analyses reveal distinct population structures and ecotypes for sugar beetâ€associated <i>Pseudomonas</i> in Oxford and Auckland. Ecology and Evolution, 2020, 10, 5963-5975.	1.9	2
78	Molecular Mechanisms Underpinning Colonization of a Plant by Plant Growth-Promoting Rhizobacteria. , 0, , 111-128.		1
79	An improved conjugation method for Pseudomonas syringae. Journal of Microbiological Methods, 2020, 177, 106025.	1.6	1
80	Genomic Islands in Plant-pathogenic Bacteria. , 0, , 137-158.		0
81	Throwing down the gauntlet for molecular plant pathology in the 21st century—what are the new challenges for bacterial research?. Molecular Plant Pathology, 2016, 17, 1163-1164.	4.2	0
82	Distribution and Characterisation of vir Gene Homologues in Pseudomonas syringae Pathovars. , 2001, , 212-215.		0
83	Isolation of Novel Avirulence Genes from Pseudomonas syringae pv. pisi. , 2001, , 216-219.		Ο