
Tim G Hales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3372868/publications.pdf Version: 2024-02-01

TIM C. HALES

#	Article	IF	CITATIONS
1	The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature, 1999, 397, 359-363.	27.8	559
2	Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature, 1997, 385, 820-823.	27.8	392
3	The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. British Journal of Pharmacology, 1991, 104, 619-628.	5.4	319
4	Perioperative opioid analgesia—when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet, The, 2019, 393, 1558-1568.	13.7	312
5	Voltage-Gated Na+ Channel <i>SCN5A</i> Is a Key Regulator of a Gene Transcriptional Network That Controls Colon Cancer Invasion. Cancer Research, 2010, 70, 6957-6967.	0.9	239
6	The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 2009, 56, 273-284.	4.1	228
7	GABAA receptors mediate inhibition of T cell responses. Journal of Neuroimmunology, 1999, 96, 21-28.	2.3	155
8	GABA Has Excitatory Actions on GnRH-Secreting Immortalized Hypothalamic (GT1-7) Neurons. Neuroendocrinology, 1994, 59, 297-308.	2.5	133
9	A Novel Class of Ligand-gated Ion Channel Is Activated by Zn2+. Journal of Biological Chemistry, 2003, 278, 712-717.	3.4	130
10	The properties of 5â€HT ₃ receptors in clonal cell lines studied by patchâ€clamp techniques. British Journal of Pharmacology, 1989, 97, 27-40.	5.4	125
11	Common Determinants of Single Channel Conductance within the Large Cytoplasmic Loop of 5-Hydroxytryptamine Type 3 and α4β2 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2006, 281, 8062-8071.	3.4	90
12	Â-Arrestin2 and c-Src Regulate the Constitutive Activity and Recycling of Opioid Receptors in Dorsal Root Ganglion Neurons. Journal of Neuroscience, 2007, 27, 5092-5104.	3.6	90
13	Modulation by general anaesthetics of rat GABAA receptors comprised of α 1β 3 and β 3 subunits expressed in human embryonic kidney 293 cells. British Journal of Pharmacology, 1997, 120, 899-909.	5.4	88
14	Potentiation, activation and blockade of GABA _A receptors of clonal murine hypothalamic GT1â€7 neurones by propofol. British Journal of Pharmacology, 1995, 115, 953-960.	5.4	86
15	Functional Properties of CaV1.3 (α1D) L-type Ca2+ Channel Splice Variants Expressed by Rat Brain and Neuroendocrine GH3 Cells. Journal of Biological Chemistry, 2001, 276, 38727-38737.	3.4	86
16	Evidence for Expression of Heteromeric Serotonin 5-HT3 Receptors in Rodents. Journal of Neurochemistry, 2001, 75, 240-247.	3.9	82
17	Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor. Trends in Pharmacological Sciences, 2005, 26, 587-594.	8.7	80
18	Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling. Scientific Reports, 2015, 5, 11541.	3.3	75

TIM G HALES

#	Article	IF	CITATIONS
19	Tonically Active GABAA Receptors in Hippocampal Pyramidal Neurons Exhibit Constitutive GABA-Independent Gating. Molecular Pharmacology, 2007, 71, 539-548.	2.3	74
20	The epilepsy mutation, γ2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABAA receptors. Molecular and Cellular Neurosciences, 2005, 29, 120-127.	2.2	66
21	Coexpression of Î-Opioid Receptors with μ Receptors in GH3 Cells Changes the Functional Response to μ Agonists from Inhibitory to Excitatory. Molecular Pharmacology, 2003, 63, 89-95.	2.3	58
22	L-type Ca2+ Channels and K+ Channels Specifically Modulate the Frequency and Amplitude of Spontaneous Ca2+ Oscillations and Have Distinct Roles in Prolactin Release in GH3 Cells. Journal of Biological Chemistry, 1999, 274, 7508-7515.	3.4	52
23	How Anesthetic, Analgesic and Other Non-Surgical Techniques During Cancer Surgery Might Affect Postoperative Oncologic Outcomes: A Summary of Current State of Evidence. Cancers, 2019, 11, 592.	3.7	50
24	Steroid Modulation of the GABA _A Receptor Complex: Electrophysiological Studies. Novartis Foundation Symposium, 1990, 153, 56-82.	1.1	43
25	Functional analysis of cloned opioid receptors in transfected cell lines. Neurochemical Research, 1996, 21, 1277-1285.	3.3	42
26	The search for the "next―euphoric non-fentanil novel synthetic opioids on the illicit drugs market: current status and horizon scanning. Forensic Toxicology, 2019, 37, 1-16.	2.4	42
27	Structural Determinants of Ca2+ Permeability and Conduction in the Human 5-Hydroxytryptamine Type 3A Receptor. Journal of Biological Chemistry, 2008, 283, 19301-19313.	3.4	41
28	Novel structural determinants of single channel conductance and ion selectivity in 5-hydroxytryptamine type 3 and nicotinic acetylcholine receptors. Journal of Physiology, 2010, 588, 587-596.	2.9	41
29	Kinetics and Spontaneous Open Probability Conferred by the Subunit of the GABAA Receptor. Journal of Neuroscience, 2005, 25, 10462-10468.	3.6	40
30	Induction of δ Opioid Receptor Function by Up-Regulation of Membrane Receptors in Mouse Primary Afferent Neurons. Molecular Pharmacology, 2005, 68, 1688-1698.	2.3	36
31	Evidence for the formation of functionally distinct αβγε GABA A receptors. Journal of Physiology, 2001, 537, 101-113.	2.9	35
32	The Minimum M3-M4 Loop Length of Neurotransmitter-activated Pentameric Receptors Is Critical for the Structural Integrity of Cytoplasmic Portals. Journal of Biological Chemistry, 2013, 288, 21558-21568.	3.4	35
33	δ Receptors Are Required for Full Inhibitory Coupling of μ Receptors to Voltage-Dependent Ca2+ Channels in Dorsal Root Ganglion Neurons. Molecular Pharmacology, 2009, 76, 134-143.	2.3	34
34	An Asymmetric Contribution to γ-Aminobutyric Type A Receptor Function of a Conserved Lysine within TM2–3 of α1, β2, and γ2 Subunits. Journal of Biological Chemistry, 2006, 281, 17034-17043.	3.4	32
35	A genome-wide association study finds genetic variants associated with neck or shoulder pain in UK Biobank. Human Molecular Genetics, 2020, 29, 1396-1404.	2.9	32
36	The promiscuous role of the epsilon subunit in GABAA receptor biogenesis. Molecular and Cellular Neurosciences, 2008, 37, 610-621.	2.2	29

TIM G HALES

#	Article	IF	CITATIONS
37	High Affinity Binding of Epibatidine to Serotonin Type 3 Receptors. Journal of Biological Chemistry, 2008, 283, 9659-9665.	3.4	28
38	Direct Subunit-Dependent Multimodal 5-Hydroxytryptamine ₃ Receptor Antagonism by Methadone. Molecular Pharmacology, 2009, 75, 908-917.	2.3	27
39	Dynamic Modification of a Mutant Cytoplasmic Cysteine Residue Modulates the Conductance of the Human 5-HT3A Receptor. Journal of Biological Chemistry, 2007, 282, 6172-6182.	3.4	25
40	Analgesic Tone Conferred by Constitutively Active Mu Opioid Receptors in Mice Lacking β-Arrestin 2. Molecular Pain, 2011, 7, 1744-8069-7-24.	2.1	24
41	TRV130 partial agonism and capacity to induce antiâ€nociceptive tolerance revealed through reducing available μâ€opioid receptor number. British Journal of Pharmacology, 2021, 178, 1855-1868.	5.4	24
42	Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. IScience, 2021, 24, 102270.	4.1	23
43	The influence of an endogenous β3 subunit on recombinant GABAA receptor assembly and pharmacology in WSS-1 cells and transiently transfected HEK293 cells. Neuropharmacology, 2000, 39, 611-620.	4.1	22
44	The 5â€HT3B subunit affects highâ€potency inhibition of 5â€HT ₃ receptors by morphine. British Journal of Pharmacology, 2012, 165, 693-704.	5.4	22
45	Potent Inactivation-Dependent Inhibition of Adult and Neonatal NaV1.5 Channels by Lidocaine and Levobupivacaine. Anesthesia and Analgesia, 2018, 127, 650-660.	2.2	21
46	Morphine activation of mu opioid receptors causes disinhibition of neurons in the ventral tegmental area mediated by β-arrestin2 and c-Src. Scientific Reports, 2017, 7, 9969.	3.3	20
47	Src Kinase Inhibition Attenuates Morphine Tolerance without Affecting Reinforcement or Psychomotor Stimulation. Anesthesiology, 2017, 127, 878-889.	2.5	18
48	Influences on blockade by <i>t</i> â€butylbicycloâ€phosphoroâ€thionate of GABA _A receptor spontaneous gating, agonist activation and desensitization. Journal of Physiology, 2012, 590, 163-178.	2.9	16
49	Cloned δ-Opioid Receptors in GH3 Cells Inhibit Spontaneous Ca2+ Oscillations and Prolactin Release ThroughK IR Channel Activation. Journal of Neurophysiology, 2000, 83, 2691-2698.	1.8	15
50	Development of an undergraduate pharmacogenomics curriculum. Pharmacogenomics, 2009, 10, 1979-1986.	1.3	15
51	From inhibition to excitation: Functional effects of interaction between opioid receptors. Life Sciences, 2004, 76, 479-485.	4.3	14
52	Mutagenic Analysis of the Intracellular Portals of the Human 5-HT3A Receptor. Journal of Biological Chemistry, 2013, 288, 31592-31601.	3.4	14
53	Agonist―and antagonistâ€induced upâ€regulation of surface 5â€ <scp>HT</scp> ₃ <scp>A</scp> receptors. British Journal of Pharmacology, 2015, 172, 4066-4077.	5.4	14
54	Activation of μâ€opioid receptors by <scp>MTâ€45</scp> (1â€cyclohexylâ€4â€(1,2â€diphenylethyl)piperazine fluorinated derivatives. British Journal of Pharmacology, 2020, 177, 3436-3448.) and its	8

TIM G HALES

#	Article	IF	CITATIONS
55	Engineering a surrogate human heteromeric $\hat{I} \pm / \hat{I}^2$ glycine receptor orthosteric site exploiting the structural homology and stability of acetylcholine-binding protein. IUCrJ, 2019, 6, 1014-1023.	2.2	8
56	Fluorophore assisted light inactivation (FALI) of recombinant 5-HT3A receptor constitutive internalization and function. Molecular and Cellular Neurosciences, 2011, 47, 79-92.	2.2	7
57	A role for loop G in the β1 strand in GABA _A receptor activation. Journal of Physiology, 2016, 594, 5555-5571.	2.9	7
58	Menthol reduces phototoxicity pain in a mouse model of photodynamic therapy. Pain, 2018, 159, 284-297.	4.2	7
59	A conserved cysteine residue in the third transmembrane domain is essential for homomeric 5-HT3receptor function. Journal of Physiology, 2010, 588, 603-616.	2.9	6
60	Loop G in the GABA _A receptor α1 subunit influences gating efficacy. Journal of Physiology, 2017, 595, 1725-1741.	2.9	5
61	Amino acid substitutions in the human homomeric β3 GABAA receptor that enable activation by GABA. Journal of Biological Chemistry, 2019, 294, 2375-2385.	3.4	5
62	A Structural Rationale for N â€Methylbicuculline Acting as a Promiscuous Competitive Antagonist of Inhibitory Pentameric Ligandâ€Gated Ion Channels. ChemBioChem, 2020, 21, 1526-1533.	2.6	3
63	Validation of the Nepali Version of the Self-reported Leeds Assessment of Neuropathic Symptoms and Signs (S-LANSS) in Adults With Chronic Pain and Predominantly Low-literacy Levels. Journal of Pain, 2022, 23, 424-433.	1.4	2
64	Mechanisms of anaesthetics: lessons learned from creatures great and small. Anaesthesia, 2011, 66, 334-337.	3.8	1