
Paul R Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3372653/publications.pdf Version: 2024-02-01

PALLE P YOUNG

#	Article	IF	CITATIONS
1	Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 by Disrupting the Spike–ACE2 Interaction. ACS Central Science, 2022, 8, 527-545.	11.3	62
2	Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines, 2022, 10, 578.	4.4	7
3	Peptide-Based Vaccine against SARS-CoV-2: Peptide Antigen Discovery and Screening of Adjuvant Systems. Pharmaceutics, 2022, 14, 856.	4.5	4
4	Koala retrovirus load and non-A subtypes are associated with secondary disease among wild northern koalas. PLoS Pathogens, 2022, 18, e1010513.	4.7	4
5	Skin-patch delivered subunit vaccine induces broadly neutralising antibodies against SARS-CoV-2 variants of concern. Vaccine, 2022, 40, 4929-4932.	3.8	6
6	A broadly protective antibody that targets the flavivirus NS1 protein. Science, 2021, 371, 190-194.	12.6	66
7	Adjuvant Selection for Influenza and RSV Prefusion Subunit Vaccines. Vaccines, 2021, 9, 71.	4.4	11
8	The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines, 2021, 9, 26.	4.4	19
9	Micro-fusion inhibition tests: quantifying antibody neutralization of virus-mediated cell–cell fusion. Journal of General Virology, 2021, 102, .	2.9	21
10	An Optimized High-Throughput Immuno-Plaque Assay for SARS-CoV-2. Frontiers in Microbiology, 2021, 12, 625136.	3.5	41
11	Retroviral integrations contribute to elevated host cancer rates during germline invasion. Nature Communications, 2021, 12, 1316.	12.8	16
12	Discovery of Sisunatovir (RV521), an Inhibitor of Respiratory Syncytial Virus Fusion. Journal of Medicinal Chemistry, 2021, 64, 3658-3676.	6.4	18
13	Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nature Communications, 2021, 12, 2037.	12.8	125
14	A chimeric dengue virus vaccine candidate delivered by high density microarray patches protects against infection in mice. Npj Vaccines, 2021, 6, 66.	6.0	22
15	Assessing the potential of unmanned aerial vehicle spraying of aqueous ozone as an outdoor disinfectant for SARS-CoV-2. Environmental Research, 2021, 196, 110944.	7.5	22
16	A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nature Communications, 2021, 12, 3266.	12.8	28
17	A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses. Nature Communications, 2021, 12, 3431.	12.8	89
18	Combinatorial F-G Immunogens as Nipah and Respiratory Syncytial Virus Vaccine Candidates. Viruses, 2021, 13, 1942.	3.3	10

#	Article	IF	CITATIONS
19	Koala retrovirus genetic diversity and transmission dynamics within captive koala populations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
20	Cordâ€blood respiratory syncytial virus antibodies and respiratory health in first 5 years of life. Pediatric Pulmonology, 2021, 56, 3942-3951.	2.0	4
21	Implications of Dengue Virus Maturation on Vaccine Induced Humoral Immunity in Mice. Viruses, 2021, 13, 1843.	3.3	0
22	Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infectious Diseases, The, 2021, 21, 1383-1394.	9.1	82
23	Preclinical development of a molecular clampâ€stabilised subunit vaccine for severe acute respiratory syndrome coronavirus 2. Clinical and Translational Immunology, 2021, 10, e1269.	3.8	45
24	Complete protection by a single-dose skin patch–delivered SARS-CoV-2 spike vaccine. Science Advances, 2021, 7, eabj8065.	10.3	31
25	Development of molecular clamp stabilized hemagglutinin vaccines for Influenza A viruses. Npj Vaccines, 2021, 6, 135.	6.0	7
26	Developing a Stabilizing Formulation of a Live Chimeric Dengue Virus Vaccine Dry Coated on a High-Density Microarray Patch. Vaccines, 2021, 9, 1301.	4.4	10
27	Detection and Quantification of SARS-CoV-2 Receptor Binding Domain Neutralization by a Sensitive Competitive ELISA Assay. Vaccines, 2021, 9, 1493.	4.4	5
28	Rapid Response Subunit Vaccine Design in the Absence of Structural Information. Frontiers in Immunology, 2020, 11, 592370.	4.8	11
29	Disease X ver1.0: COVID-19. Microbiology Australia, 2020, 41, 109.	0.4	6
30	Inactivation of <scp>Japanese</scp> encephalitis virus in plasma by methylene blue combined with visible light and in platelet concentrates by ultraviolet <scp>C</scp> light. Transfusion, 2020, 60, 2655-2660.	1.6	6
31	Arthritogenic Alphavirus Vaccines: Serogrouping Versus Cross-Protection in Mouse Models. Vaccines, 2020, 8, 209.	4.4	21
32	Bacterial colonization dynamics associated with respiratory syncytial virus during early childhood. Pediatric Pulmonology, 2020, 55, 1237-1245.	2.0	13
33	Bovine Herpesvirus-4-Vectored Delivery of Nipah Virus Glycoproteins Enhances T Cell Immunogenicity in Pigs. Vaccines, 2020, 8, 115.	4.4	27
34	Flow-cytometry detection of fluorescent magnetic nanoparticle clusters increases sensitivity of dengue immunoassay. Analytica Chimica Acta, 2020, 1107, 85-91.	5.4	9
35	Analysis of phylogenetic diversity and in vitro adherence characteristics of respiratory syncytial virus and Streptococcus pneumoniae clinical isolates obtained during pediatric respiratory co-infections. Microbiology (United Kingdom), 2020, 166, 63-72.	1.8	4
36	Antibody-Binding, Antifouling Surface Coatings Based on Recombinant Expression of Zwitterionic EK Peptides. Langmuir, 2019, 35, 1266-1272.	3.5	19

#	Article	IF	CITATIONS
37	Basimarols A, B, and C, Highly Oxygenated Pimarane Diterpenoids from Basilicum polystachyon. Journal of Natural Products, 2019, 82, 2828-2834.	3.0	13
38	Dual targeting of dengue virus virions and NS1 protein with the heparan sulfate mimic PG545. Antiviral Research, 2019, 168, 121-127.	4.1	27
39	Sustained Wolbachia-mediated blocking of dengue virus isolates following serial passage in Aedes aegypti cell culture. Virus Evolution, 2019, 5, vez012.	4.9	19
40	Inactivation of yellow fever virus in plasma after treatment with methylene blue and visible light and in platelet concentrates following treatment with ultraviolet C light. Transfusion, 2019, 59, 2223-2227.	1.6	14
41	Determinants of Zika virus host tropism uncovered by deep mutational scanning. Nature Microbiology, 2019, 4, 876-887.	13.3	50
42	Stachyonic Acid: A Dengue Virus Inhibitor from <i>Basilicum polystachyon</i> . Chemistry - A European Journal, 2019, 25, 5664-5667.	3.3	27
43	Intra-host growth kinetics of dengue virus in the mosquito Aedes aegypti. PLoS Pathogens, 2019, 15, e1008218.	4.7	23
44	Efficient Delivery of Dengue Virus Subunit Vaccines to the Skin by Microprojection Arrays. Vaccines, 2019, 7, 189.	4.4	28
45	A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Science Translational Medicine, 2019, 11, .	12.4	70
46	Granzyme A in Chikungunya and Other Arboviral Infections. Frontiers in Immunology, 2019, 10, 3083.	4.8	30
47	Structural and Functional Characterization of a Cross-Reactive Dengue Virus Neutralizing Antibody that Recognizes a Cryptic Epitope. Structure, 2018, 26, 51-59.e4.	3.3	41
48	<i>Streptococcus pneumoniae</i> colonization of the nasopharynx is associated with increased severity during respiratory syncytial virus infection in young children. Respirology, 2018, 23, 220-227.	2.3	48
49	The Heptad Repeat C Domain of the Respiratory Syncytial Virus Fusion Protein Plays a Key Role in Membrane Fusion. Journal of Virology, 2018, 92, .	3.4	9
50	Pathogenesis, Humoral Immune Responses, and Transmission between Cohoused Animals in a Ferret Model of Human Respiratory Syncytial Virus Infection. Journal of Virology, 2018, 92, .	3.4	17
51	Arboviruses: A Family on the Move. Advances in Experimental Medicine and Biology, 2018, 1062, 1-10.	1.6	43
52	Plugging the Leak in Dengue Shock. Advances in Experimental Medicine and Biology, 2018, 1062, 89-106.	1.6	4
53	Viral Entry and NS1 as Potential Antiviral Drug Targets. Advances in Experimental Medicine and Biology, 2018, 1062, 107-113.	1.6	4
54	Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ-line invasion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8609-8614.	7.1	40

#	Article	IF	CITATIONS
55	Communication Ambassadors—an Australian Social Media Initiative to Develop Communication Skills in Early Career Scientists. Journal of Microbiology and Biology Education, 2018, 19, .	1.0	1
56	Complete genome of Aedes aegypti anphevirus in the Aag2 mosquito cell line. Journal of General Virology, 2018, 99, 832-836.	2.9	13
57	Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunology and Cell Biology, 2017, 95, 491-495.	2.3	89
58	Clinical and Laboratory Diagnosis of Dengue Virus Infection. Journal of Infectious Diseases, 2017, 215, S89-S95.	4.0	237
59	Phylogenetic Diversity of Koala Retrovirus within a Wild Koala Population. Journal of Virology, 2017, 91, .	3.4	40
60	Successful post-exposure prophylaxis of Ebola infected non-human primates using Ebola glycoprotein-specific equine IgG. Scientific Reports, 2017, 7, 41537.	3.3	14
61	Investigating the Effect of Substrate Materials on Wearable Immunoassay Performance. Langmuir, 2017, 33, 773-782.	3.5	4
62	High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses. Scientific Reports, 2017, 7, 12644.	3.3	36
63	Induction of high titred, non-neutralising antibodies by self-adjuvanting peptide epitopes derived from the respiratory syncytial virus fusion protein. Scientific Reports, 2017, 7, 11130.	3.3	20
64	Reduction of Zika virus infectivity in platelet concentrates after treatment with ultraviolet C light and in plasma after treatment with methylene blue and visible light. Transfusion, 2017, 57, 2677-2682.	1.6	35
65	Introduction to Vaccines and Vaccination. , 2017, , 47-62.		5
66	Computational Identification of Antibody Epitopes on the Dengue Virus NS1 Protein. Molecules, 2017, 22, 607.	3.8	17
67	Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay. PLoS ONE, 2017, 12, e0180669.	2.5	27
68	Riboflavin and ultraviolet light: impact on dengue virus infectivity. Vox Sanguinis, 2016, 111, 235-241.	1.5	29
69	Inactivation of dengue, chikungunya, and Ross River viruses in platelet concentrates after treatment with ultraviolet C light. Transfusion, 2016, 56, 1548-1555.	1.6	40
70	Product release is rate-limiting for catalytic processing by the Dengue virus protease. Scientific Reports, 2016, 6, 37539.	3.3	10
71	A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance. Scientific Reports, 2016, 6, 22791.	3.3	30
72	The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antiviral Research, 2016, 130, 7-18.	4.1	103

#	Article	IF	CITATIONS
73	Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light. Transfusion, 2016, 56, 2278-2285.	1.6	25
74	Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses. Scientific Reports, 2016, 6, 22094.	3.3	41
75	Simultaneous uncoupled expression and purification of the Dengue virus NS3 protease and NS2B co-factor domain. Protein Expression and Purification, 2016, 119, 124-129.	1.3	18
76	Recent advances in the development of subunit-based RSV vaccines. Expert Review of Vaccines, 2016, 15, 53-68.	4.4	26
77	Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Scientific Reports, 2015, 5, 16145.	3.3	62
78	Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue. Biointerphases, 2015, 10, 04A305.	1.6	22
79	The I22V and L72S substitutions in West Nile virus prM protein promote enhanced prM/E heterodimerisation and nucleocapsid incorporation. Virology Journal, 2015, 12, 72.	3.4	3
80	Response to comment on "Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity―and "Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination― Science Translational Medicine, 2015, 7, 318Ir4.	12.4	3
81	Last 20 aa of the West Nile virus NS1′ protein are responsible for its retention in cells and the formation of unique heat-stable dimers. Journal of General Virology, 2015, 96, 1042-1054.	2.9	8
82	Viral bacterial co-infection of the respiratory tract during early childhood. FEMS Microbiology Letters, 2015, 362, .	1.8	98
83	Resistance of Black-lip learl oyster, Pinctada margaritifera, to infection by Ostreid herpes virus 1μvar under experimental challenge may be mediated by humoral antiviral activity. Fish and Shellfish Immunology, 2015, 44, 232-240.	3.6	13
84	Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science Translational Medicine, 2015, 7, 304ra142.	12.4	394
85	Recent advances in dengue pathogenesis and clinical management. Vaccine, 2015, 33, 7061-7068.	3.8	58
86	Evaluation of direct versus multi-layer passivation and capture chemistries for nanoparticle-based biosensor applications. Biosensors and Bioelectronics, 2015, 67, 769-774.	10.1	8
87	Arbovirus Infections. , 2014, , 129-161.e3.		9
88	Discovery of a Novel Retrovirus Sequence in an Australian Native Rodent (Melomys burtoni): A Putative Link between Gibbon Ape Leukemia Virus and Koala Retrovirus. PLoS ONE, 2014, 9, e106954.	2.5	36
89	A brief history of Australian microbiology. Microbiology Australia, 2014, 35, 121.	0.4	1

90 The nonstructural proteins of dengue virus.. , 2014, , 377-405.

#	Article	IF	CITATIONS
91	The contribution of non-human primate models to the development of human vaccines. Discovery Medicine, 2014, 18, 313-22.	0.5	26
92	Koala retroviruses: characterization and impact on the life of koalas. Retrovirology, 2013, 10, 108.	2.0	83
93	The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Research, 2013, 98, 192-208.	4.1	425
94	Structure of the dengue virus glycoprotein non-structural protein 1 by electron microscopy and single-particle analysis. Journal of General Virology, 2012, 93, 771-779.	2.9	58
95	Prevalence of koala retrovirus in geographically diverse populations in Australia. Australian Veterinary Journal, 2012, 90, 404-409.	1.1	107
96	Surface Modified Microprojection Arrays for the Selective Extraction of the Dengue Virus NS1 Protein As a Marker for Disease. Analytical Chemistry, 2012, 84, 3262-3268.	6.5	65
97	Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence. Journal of General Virology, 2012, 93, 1965-1975.	2.9	17
98	A portable approach for the surveillance of dengue virus-infected mosquitoes. Journal of Virological Methods, 2012, 183, 90-93.	2.1	17
99	Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. Journal of General Virology, 2012, 93, 72-82.	2.9	88
100	Expression of recombinant West Nile virus prM protein fused to an affinity tag for use as a diagnostic antigen. Journal of Virological Methods, 2011, 175, 20-27.	2.1	8
101	Kinetics of Plasma Viremia and Soluble Nonstructural Protein 1 Concentrations in Dengue: Differential Effects According to Serotype and Immune Status. Journal of Infectious Diseases, 2011, 203, 1292-1300.	4.0	144
102	The Diagnostic Sensitivity of Dengue Rapid Test Assays Is Significantly Enhanced by Using a Combined Antigen and Antibody Testing Approach. PLoS Neglected Tropical Diseases, 2011, 5, e1199.	3.0	140
103	The Epidemiology of Koala Retrovirus. Journal of Veterinary Epidemiology, 2011, 15, 1-9.	0.2	7
104	Wolbachia-Mediated Resistance to Dengue Virus Infection and Death at the Cellular Level. PLoS ONE, 2010, 5, e13398.	2.5	168
105	Molecular Phylogeny of Edge Hill Virus Supports its Position in the Yellow Fever Virus Group and Identifies a New Genetic Variant. Evolutionary Bioinformatics, 2010, 6, EBO.S4966.	1.2	20
106	Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11686-11691.	7.1	162
107	The Human Immune Response to Dengue Virus Is Dominated by Highly Cross-Reactive Antibodies Endowed with Neutralizing and Enhancing Activity. Cell Host and Microbe, 2010, 8, 271-283.	11.0	526
108	Searching for the dengue virus Achilles heel. Microbiology Australia, 2010, 31, 64.	0.4	0

#	Article	IF	CITATIONS
109	Finding the right balance in the delivery of undergraduate biology programs: a personal perspective. Microbiology Australia, 2010, 31, 44.	0.4	0
110	In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Research, 2009, 84, 234-241.	4.1	95
111	Identification of novel target sites and an inhibitor of the dengue virus E protein. Journal of Computer-Aided Molecular Design, 2009, 23, 333-341.	2.9	77
112	Base-Sensitivity of Arginine Alpha-Ketoamide Inhibitors of Serine Proteases. Australian Journal of Chemistry, 2009, 62, 988.	0.9	1
113	Structure of West Nile Virus NS3 Protease: Ligand Stabilization of the Catalytic Conformation. Journal of Molecular Biology, 2009, 385, 1568-1577.	4.2	131
114	Endogenous retroviruses. Cellular and Molecular Life Sciences, 2008, 65, 3413-3421.	5.4	77
115	A dual-purpose synthetic colloidal platform for protease mapping: substrate profiling for Dengue and West Nile virus proteases. Analytical Biochemistry, 2008, 376, 151-153.	2.4	14
116	Potent Cationic Inhibitors of West Nile Virus NS2B/NS3 Protease With Serum Stability, Cell Permeability and Antiviral Activity. Journal of Medicinal Chemistry, 2008, 51, 5714-5721.	6.4	77
117	Mutagenesis of the West Nile virus NS2B cofactor domain reveals two regions essential for protease activity. Journal of General Virology, 2008, 89, 1010-1014.	2.9	52
118	West Nile Virus NS2B/NS3 Protease As An Antiviral Target. Current Medicinal Chemistry, 2008, 15, 2771-2784.	2.4	77
119	Histidine protonation and the activation of viral fusion proteins. Biochemical Society Transactions, 2008, 36, 43-45.	3.4	54
120	Epstein–Barr virus nuclear antigen (EBNA) 3A induces the expression of and interacts with a subset of chaperones and co-chaperones. Journal of General Virology, 2008, 89, 866-877.	2.9	46
121	Maternal Antibody and Viral Factors in the Pathogenesis of Dengue Virus in Infants. Journal of Infectious Diseases, 2007, 196, 416-424.	4.0	161
122	Modified Influenza Virosomes: Recent Advances and Potential in Gene Delivery. Current Medicinal Chemistry, 2007, 14, 3152-3156.	2.4	16
123	Generation and characterization of proteolytically active and highly stable truncated and full-length recombinant West Nile virus NS3. Protein Expression and Purification, 2007, 53, 87-96.	1.3	21
124	Substrate specificity of recombinant dengue 2 virus NS2B-NS3 protease: Influence of natural and unnatural basic amino acids on hydrolysis of synthetic fluorescent substrates. Archives of Biochemistry and Biophysics, 2007, 457, 187-196.	3.0	36
125	SwarmPS: Rapid, semi-automated single particle selection software. Journal of Structural Biology, 2007, 157, 174-188.	2.8	35
126	Modular α-Helical Mimetics with Antiviral Activity against Respiratory Syncitial Virus. Journal of the American Chemical Society, 2006, 128, 13284-13289.	13.7	70

#	Article	IF	CITATIONS
127	The discriminative bilateral filter: An enhanced denoising filter for electron microscopy data. Journal of Structural Biology, 2006, 155, 395-408.	2.8	88
128	Retroviral invasion of the koala genome. Nature, 2006, 442, 79-81.	27.8	322
129	The Role of Histidine Residues in Low-pH-Mediated Viral Membrane Fusion. Structure, 2006, 14, 1481-1487.	3.3	140
130	Insights to Substrate Binding and Processing by West Nile Virus NS3 Protease through Combined Modeling, Protease Mutagenesis, and Kinetic Studies. Journal of Biological Chemistry, 2006, 281, 38448-38458.	3.4	78
131	Current Status Of Short Synthetic Peptides As Vaccines. Medicinal Chemistry, 2006, 2, 627-646.	1.5	64
132	Human Metapneumovirus, Australia, 2001–2004. Emerging Infectious Diseases, 2006, 12, 1263-1266.	4.3	71
133	Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. Journal of General Virology, 2005, 86, 783-787.	2.9	139
134	Site-directed Mutagenesis and Kinetic Studies of the West Nile Virus NS3 Protease Identify Key Enzyme-Substrate Interactions. Journal of Biological Chemistry, 2005, 280, 2896-2903.	3.4	56
135	Emerging threats to the blood supply: West Nile virus and beyond. Microbiology Australia, 2005, 26, 6.	0.4	0
136	Enzymatic Characterization and Homology Model of a Catalytically Active Recombinant West Nile Virus NS3 Protease. Journal of Biological Chemistry, 2004, 279, 48535-48542.	3.4	103
137	Determination of the Disulfide Bond Arrangement of Dengue Virus NS1 Protein. Journal of Biological Chemistry, 2004, 279, 20729-20741.	3.4	55
138	Structural characterization of respiratory syncytial virus fusion inhibitor escape mutants: homology model of the F protein and a syncytium formation assay. Virology, 2003, 311, 275-288.	2.4	63
139	High Circulating Levels of the Dengue Virus Nonstructural Protein NS1 Early in Dengue Illness Correlate with the Development of Dengue Hemorrhagic Fever. Journal of Infectious Diseases, 2002, 186, 1165-1168.	4.0	568
140	Catalytically active Dengue virus NS3 protease forms aggregates that are separable by size exclusion chromatography. Protein Expression and Purification, 2002, 25, 241-247.	1.3	19
141	Production of the baculovirus-expressed dengue virus glycoprotein NS1 can be improved dramatically with optimised regimes for fed-batch cultures and the addition of the insect moulting hormone, 20-Hydroxyecdysone. Journal of Virological Methods, 2002, 105, 87-98.	2.1	22
142	Activity of Recombinant Dengue 2 Virus NS3 Protease in the Presence of a Truncated NS2B Co-factor, Small Peptide Substrates, and Inhibitors. Journal of Biological Chemistry, 2001, 276, 45762-45771.	3.4	276
143	Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB Journal, 2000, 14, 1603-1610.	0.5	114
144	Dengue virus nonstructural protein 1 is expressed in a glycosylâ€phosphatidylinositolâ€linked form that is capable of signal transduction. FASEB Journal, 2000, 14, 1603-1610.	0.5	120

#	Article	IF	CITATIONS
145	An Antigen Capture Enzyme-Linked Immunosorbent Assay Reveals High Levels of the Dengue Virus Protein NS1 in the Sera of Infected Patients. Journal of Clinical Microbiology, 2000, 38, 1053-1057.	3.9	433
146	Stable High-Level Expression of Heterologous Genes In Vitro and In Vivo by Noncytopathic DNA-Based Kunjin Virus Replicon Vectors. Journal of Virology, 2000, 74, 4394-4403.	3.4	101
147	Monodon baculovirus from Australia:ultrastructural observations. Diseases of Aquatic Organisms, 2000, 39, 169-176.	1.0	8
148	Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor Journal of General Virology, 1999, 80, 1167-1177.	2.9	78
149	Colourimetric PCR-based detection of monodon baculovirus in whole Penaeus monodon postlarvae. Journal of Virological Methods, 1998, 74, 21-29.	2.1	48
150	Improved membrane preservation of flavivirus-infected cells with cryosectioning. Journal of Virological Methods, 1996, 56, 67-75.	2.1	45
151	Immunolocalization of the Dengue Virus Nonstructural Glycoprotein NS1 Suggests a Role in Viral RNA Replication. Virology, 1996, 220, 232-240.	2.4	393
152	Maturation of the dengue-2 virus NS1 protein in insect cells: effects of downstream NS2A sequences on baculovirus-expressed gene constructs. Journal of General Virology, 1995, 76, 979-984.	2.9	26
153	Precise location of sequential dengue virus subcomplex and complex B cell epitopes on the nonstructural-1 glycoprotein. Archives of Virology, 1994, 137, 315-326.	2.1	69
154	Optimization of PCR and automated sequencing of clinical isolates of respiratory syncytial virus. Journal of Virological Methods, 1994, 50, 335-341.	2.1	3
155	Sequence of the dengue virus type 2 (strain PR-159) NS1 gene and comparison with its vaccine derivative. Nucleic Acids Research, 1993, 21, 1668-1668.	14.5	6
156	Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology, 1992, 187, 480-491.	2.4	119
157	Production of dimer-specific and dengue virus group cross-reactive mouse monoclonal antibodies to the dengue 2 virus non-structural glycoprotein NS1. Journal of General Virology, 1991, 72, 961-965.	2.9	65
158	Immunoaffinity purification of native dimer forms of the flavivirus non-structural glycoprotein, NS1. Journal of Virological Methods, 1990, 30, 323-332.	2.1	47
159	An improved method for the detection of peroxidase-conjugated antibodies on immunoblots. Journal of Virological Methods, 1989, 24, 227-235.	2.1	27
160	Enhancement of immunoblot staining using a mixed chromogenic substrate. Journal of Immunological Methods, 1989, 121, 295-296.	1.4	66
161	Localization of an Arenavirus Protein in the Nuclei of Infected Cells. Journal of General Virology, 1987, 68, 2465-2470.	2.9	18
162	Hepatitis B surface antigen polypeptide micelles from antigen expressed in Saccharomyces cerevisiae. Journal of Virological Methods, 1986, 14, 25-35.	2.1	9

#	Article	IF	CITATIONS
163	Regulation of Pichinde virus replication in Vero and BHK-21 cells. Medical Microbiology and Immunology, 1986, 175, 63-66.	4.8	2
164	Ribonucleoprotein complexes associated with virions of Pichinde virus and Pichinde virus-infected cells. Medical Microbiology and Immunology, 1986, 175, 79-83.	4.8	3
165	Variation among new and old world arenaviruses. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1984, 78, 299-306.	1.8	4
166	CHARACTERIZATION OF NUGGET VIRUS, A SEROTYPE OF THE KEMEROVO GROUP OF ORBIVIRUSES. The Australian Journal of Experimental Biology and Medical Science, 1984, 62, 101-115.	0.7	12
167	Chemical inactivation of hepatitis B virus: The effect of disinfectants on virus-associated DNA polymerase activity, morphology and infectivity. Journal of Virological Methods, 1983, 7, 135-148.	2.1	19
168	Fine Structure Analysis of Pichinde Virus Nucleocapsids. Journal of General Virology, 1983, 64, 833-842.	2.9	67
169	Preparation of hepatitis B polypeptide micelles from human carrier plasma. Journal of Virological Methods, 1982, 4, 177-185.	2.1	15
170	Evaluation of plaque size reduction as a method for the detection of pichinde virus antibody. Archives of Virology, 1980, 65, 157-167.	2.1	11
171	The Isolation of Recombinants between Related Orbiviruses. Journal of General Virology, 1978, 41, 333-342.	2.9	48
172	Tumor-Associated Antigenic Peptides as Vaccine Candidates. , 0, , 303-316.		0
173	First Report of a Phase 1 Randomised Trial of Molecular Clamp-Stabilised Spike Protein-Based and MF59-Adjuvanted Vaccine for SARS-CoV-2. SSRN Electronic Journal, 0, , .	0.4	2
174	Structural and Functional Characterization of a CrosssReactive Dengue Virus Neutralizing Antibody That Recognizes a Cryptic Epitope. SSRN Electronic Journal, 0, , .	0.4	0
175	Rapid Application of the Molecular Clamp Platform for SARS-CoV-2. SSRN Electronic Journal, 0, , .	0.4	1
176	Nucleocapsid Specific Diagnostics for the Detection of Divergent SARS-CoV-2 Variants. Frontiers in Immunology, 0, 13, .	4.8	11