Ayse Turak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3371492/publications.pdf

Version: 2024-02-01

73	1,479	21	37
papers	citations	h-index	g-index
74	74	74	2110 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Enhanced Stokes Shift and Phase Stability by Cosynthesizing Perovskite Nanoparticles (MAPbl ₃ /MAPbBr ₃) in a Single Solution. Advanced Photonics Research, 2022, 3, .	3.6	6
2	Utility of far-field effects from tip-assisted Raman spectroscopy for the detection of a monolayer of diblock copolymer reverse micelles for nanolithography. Physical Chemistry Chemical Physics, 2021, 23, 11065-11074.	2.8	3
3	Necessity of submonolayer LiF anode interlayers for improved device performance in blue phosphorescent OLEDs. Journal of Materials Science: Materials in Electronics, 2021, 32, 1161-1177.	2.2	8
4	Energy storage and piezoelectric properties of leadâ€free SrTiO3-modified 0.965Bi0.5Na0.5TiO3–0.035BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 10712-10725.	2.2	1
5	Enhanced photoelectrochemical water splitting efficiency of hematite (\hat{l} ±-Fe2O3)-Based photoelectrode by the introduction of maghemite (\hat{l} 3-Fe2O3) nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410, 113179.	3.9	37
6	LiF Nanoparticles Enhance Targeted Degradation of Organic Material under Low Dose X-ray Irradiation. Radiation, 2021, 1, 131-144.	1.4	2
7	Role of hydration and micellar shielding in tuning the structure of single crystalline iron oxide nanoparticles for designer applications. Nano Select, 2021, 2, 2419-2431.	3.7	5
8	On the Role of LiF in Organic Optoelectronics. Electronic Materials, 2021, 2, 198-221.	1.9	21
9	Structural evolution and electromechanical properties of SrTiO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics prepared by sol-gel and hydrothermal methods. Materials Chemistry and Physics, 2021, 266, 124529.	4.0	16
10	Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today, 2021, 40, 101267.	11.9	68
11	Oxygen Coordination on Fe–N–C to Boost Oxygen Reduction Catalysis. Journal of Physical Chemistry Letters, 2021, 12, 517-524.	4.6	20
12	Oxidized impurity in transition metal nitride for improving the hydrogen evolution efficiency of transition metal nitride-based catalyst. Applied Materials Today, 2020, 18, 100476.	4.3	19
13	Modified Tip-enhanced Raman spectroscopy to detect a monolayer of Reverse Micelles. , 2020, , .		O
14	Universal Transfer Printing of Micelle-Templated Nanoparticles Using Plasma-Functionalized Graphene. ACS Applied Materials & amp; Interfaces, 2020, 12, 46530-46538.	8.0	4
15	Phase changes in PS-b-P2VP reverse micelles by pressurized CO2 for nanostructure deposition. , 2020, , .		O
16	Substrate-assisted Transfer of Nanoparticles by Graphene on Metal-Organic Interfaces. , 2020, , .		0
17	Mesoporous Ternary Nitrides of Earth-Abundant Metals as Oxygen Evolution Electrocatalyst. Nano-Micro Letters, 2020, 12, 79.	27.0	63
18	Three-Dimensional Mesoporous Phosphide–Spinel Oxide Heterojunctions with Dual Function as Catalysts for Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 1684-1693.	5.1	43

#	Article	IF	CITATIONS
19	Tunable Etching of CVD Graphene for Transfer Printing of Nanoparticles Driven by Desorption of Contaminants with Low Temperature Annealing. ECS Journal of Solid State Science and Technology, 2020, 9, 093006.	1.8	2
20	Anionic exchange route to synthesize highly uniform, stable and luminescent MAPBr nanoparticles. , 2020, , .		2
21	Reverse Micelle Templating Route to Ordered Monodispersed Spherical Organo-Lead Halide Perovskite Nanoparticles for Light Emission. ACS Applied Nano Materials, 2019, 2, 4121-4132.	5.0	32
22	An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sensors and Actuators B: Chemical, 2019, 290, 59-67.	7.8	172
23	Probing the multi-step crystallization dynamics of micelle templated nanoparticles: structural evolution of single crystalline \hat{l}^3 -Fe2O3. Nanoscale, 2019, 11, 9076-9084.	5.6	25
24	Tungstenâ€Nitrideâ€Coated Carbon Nanospheres as a Sulfur Host for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 2074-2079.	3.4	16
25	Improved hole injection for blue phosphorescent organic light-emitting diodes using solution deposited tin oxide nano-particles decorated ITO anodes. Scientific Reports, 2019, 9, 2411.	3.3	24
26	Device stability in organic optoelectronics. , 2019, , 599-662.		3
27	disLocate: tools to rapidly quantify local intermolecular structure to assess two-dimensional order in self-assembled systems. Scientific Reports, 2018, 8, 1554.	3.3	14
28	A 3D-printed Chamber for Organic Optoelectronic Device Degradation Testing. Journal of Visualized Experiments, 2018, , .	0.3	0
29	Reproducing morphologies of disorderly self-assembling planar molecules with static and dynamic simulation methods by matching density. Physica A: Statistical Mechanics and Its Applications, 2017, 471, 301-314.	2.6	2
30	Transfer printing gold nanoparticle arrays by tuning the surface hydrophilicity of thermo-responsive poly N-isopropylacrylamide (pNIPAAm). Nanoscale, 2017, 9, 2969-2973.	5.6	22
31	Statistical Paradigm for Organic Optoelectronic Devices: Normal Force Testing for Adhesion of Organic Photovoltaics and Organic Light-Emitting Diodes. ACS Applied Materials & Emp; Interfaces, 2017, 9, 13347-13356.	8.0	4
32	Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching. Carbon, 2017, 125, 500-508.	10.3	31
33	LiF Doping of C ₆₀ Studied with X-ray Photoemission Shake-Up Analysis. ECS Journal of Solid State Science and Technology, 2017, 6, M3116-M3121.	1.8	9
34	Effect of various red phosphorescent dopants in single emissive white phosphorescent organic light-emitting devices. Chinese Optics Letters, 2017, 15, 051602-51606.	2.9	0
35	Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study. Acta Astronautica, 2016, 128, 616-627.	3.2	33
36	Interfacial Structure Modifying Interlayers Equalize Substrate Performance: The Case of PEDOT:PSS. Science of Advanced Materials, 2016, 8, 414-420.	0.7	1

#	Article	IF	Citations
37	Study of <l>p</l> -/ <l>n</l> -Type Co-Host System in Single Emissive White Phosphorescent Organic Light-Emitting Devices Using Glass and Flexible Substrate. Science of Advanced Materials, 2016, 8, 1634-1640.	0.7	3
38	Controlled Fabrication of Polypyrrole Surfaces with Overhang Structures by Colloidal Templating. ACS Applied Materials & Distriction (2015), 7, 16507-16517.	8.0	15
39	Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer. Journal of Applied Physics, 2015, 117, .	2.5	4
40	Organic photovoltaics and energy: general discussion. Faraday Discussions, 2014, 174, 341-355.	3.2	2
41	Nanoreactors or nanoscale stablizers: routes for solution processed indium tin oxide nanoparticles by reverse micelle deposition. Canadian Journal of Physics, 2014, 92, 797-801.	1.1	11
42	Effect of post-annealing on the plasma etching of graphene-coated-copper. Faraday Discussions, 2014, 173, 79-93.	3.2	10
43	Synthesis in gas and liquid phase: general discussion. Faraday Discussions, 2014, 173, 115-135.	3.2	2
44	Doping and Theory: general discussion. Faraday Discussions, 2014, 173, 233-256.	3.2	4
45	Functionalisation, separation and solvation: general discussion. Faraday Discussions, 2014, 173, 337-349.	3.2	0
46	Steric self-assembly of laterally confined organic semiconductor molecule analogues. Physical Chemistry Chemical Physics, 2014, 16, 20228.	2.8	2
47	Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride. Thin Solid Films, 2014, 559, 58-63.	1.8	21
48	Interfacial degradation in organic optoelectronics. RSC Advances, 2013, 3, 6188.	3.6	107
49	Stabilization methods for small molecule dewetting on indium tin oxide substrates for organic photovoltaics., 2013,,.		2
50	High Efficiency Blue Organic Light Emitting Devices doped by BCzVBi in Hole and Electron Transport Layer. Materials Research Society Symposia Proceedings, 2013, 1567, 1.	0.1	5
51	Solution processed LiF anode modification for polymer solar cells. Applied Physics Letters, 2012, 100, .	3.3	27
52	Supramolecular Environment-Dependent Electronic Properties of Metal–Organic Interfaces Journal of Physical Chemistry C, 2012, 116, 4780-4785.	3.1	25
53	Solution-Processed LiF for Work Function Tuning in Electrode Bilayers. Nano Letters, 2012, 12, 39-44.	9.1	34
54	Nanoscale Engineering of Exciton Dissociating Interfaces in Organic Photovoltaics. Journal of Nano Research, 2011, 14, 123-134.	0.8	4

#	Article	IF	Citations
55	Island size effects in organic optoelectronic devices. , 2010, , .		2
56	Systematic analysis of processing parameters on the ordering and performance of working poly(3-hexyl-thiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells. Journal of Renewable and Sustainable Energy, 2010, 2, 053103.	2.0	8
57	Strain-effect for controlled growth mode and well-ordered structure of quaterrylene thin films. Journal of Chemical Physics, 2010, 133, 034706.	3.0	14
58	Copper-phthalocyanine based metal–organic interfaces: The effect of fluorination, the substrate, and its symmetry. Journal of Chemical Physics, 2010, 133, 214703.	3.0	103
59	New Insight into the Role of the Interfacial Molecular Structure on Growth and Scaling in Organic Heterostructures. Journal of Physical Chemistry C, 2010, 114, 13752-13758.	3.1	20
60	Molecular heterojunction morphology on rough substrate surfaces: component separation by Fourier subtraction. Nanotechnology, 2010, 21, 285705.	2.6	3
61	Experimental Relation between Stranskiâ°'Krastanov Growth of DIP/F ₁₆ CoPc Heterostructures and the Reconstruction of the Organic Interface. Journal of Physical Chemistry C, 2009, 113, 4234-4239.	3.1	26
62	Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface. Journal of Applied Physics, 2007, 101, 033522.	2.5	30
63	Oxidation of LiF–Coated Metal Surfaces. Journal of the Electrochemical Society, 2007, 154, H691.	2.9	9
64	Transition Metal-Catalyzed Dissociation of Phosphineâ^'Gallane Adducts:  Isolation of Mechanistic Model Complexes and Heterogeneous Catalyst Poisoning Studies. Inorganic Chemistry, 2007, 46, 7394-7402.	4.0	11
65	Interfacial Staining of a Phase-Separated Block Copolymer with Ruthenium Tetroxide. Macromolecules, 2007, 40, 1594-1597.	4.8	16
66	Passivation effect of Alâ^•LiF electrode on C60 diodes. Applied Physics Letters, 2005, 86, 033107.	3.3	15
67	Organic light-emitting devices with silicon anodes. Journal of Applied Physics, 2005, 97, 086107.	2.5	23
68	Poisoning of Heterogeneous, Late Transition Metal Dehydrocoupling Catalysts by Boranes and Other Group 13 Hydrides. Journal of the American Chemical Society, 2005, 127, 5116-5124.	13.7	82
69	Metal/AlQ3 interface structures. Applied Physics Letters, 2002, 81, 766-768.	3.3	39
70	Chemical structure of Al/LiF/Alq interfaces in organic light-emitting diodes. Applied Physics Letters, 2002, 81, 3173-3175.	3.3	82
71	Studies of Alq/Mg: Ag Interface in Organic Light-Emitting Diodes by XPS. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	1
72	Dewetting Stability of ITO Surfaces in Organic Optoelectronic Devices. , 0, , .		3

#	‡	Article	IF	CITATIONS
7	'3	Nanoscale Engineering of Exciton Dissociating Interfaces in Organic Photovoltaics. Journal of Nano Research, 0, 14, 125-136.	0.8	5