Pamela Stanley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337041/publications.pdf

Version: 2024-02-01

138 papers 9,882 citations

51 h-index 95 g-index

179 all docs

179 docs citations

times ranked

179

8227 citing authors

#	Article	IF	Citations
1	Glycans that regulate Notch signaling in the intestine. Biochemical Society Transactions, 2022, 50, 689-701.	3.4	4
2	Fringe GlcNAc-transferases differentially extend O-fucose on endogenous NOTCH1 in mouse activated T cells. Journal of Biological Chemistry, 2022, 298, 102064.	3.4	9
3	Roles of Notch Glycoslation in Signaling. FASEB Journal, 2021, 35, .	0.5	2
4	Regulation of Notch Signaling By O-Glycans during Lymphopoiesis and Myelopoiesis. Blood, 2021, 138, 2170-2170.	1.4	1
5	Point mutations that inactivate MGAT4D-L, an inhibitor of MGAT1 and complex N-glycan synthesis. Journal of Biological Chemistry, 2020, 295, 14053-14064.	3.4	1
6	In Situ Fucosylation of the Wnt Co-receptor LRP6 Increases Its Endocytosis and Reduces Wnt/ \hat{l}^2 -Catenin Signaling. Cell Chemical Biology, 2020, 27, 1140-1150.e4.	5.2	9
7	The Golgi Glycoprotein MGAT4D is an Intrinsic Protector of Testicular Germ Cells From Mild Heat Stress. Scientific Reports, 2020, 10, 2135.	3.3	8
8	Transgenic Rescue of Spermatogenesis in Males With Mgat1 Deleted in Germ Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 212.	3.7	3
9	Roles of Notch Glycoslation in Signaling. FASEB Journal, 2020, 34, 1-1.	0.5	2
10	3030 – A GLYCAN BASED APPROACH TO CHARACTERIZING AND ISOLATING CELLS IN THE HEMATOPOIETIC SYSTEM. Experimental Hematology, 2020, 88, S47.	0.4	0
11	Roles for Golgi Glycans in Oogenesis and Spermatogenesis. Frontiers in Cell and Developmental Biology, 2019, 7, 98.	3.7	14
12	Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology, 2019, 29, 620-624.	2.5	292
13	A modifier in the 129S2/SvPasCrl genome is responsible for the viability of Notch1[12f/12f] mice. BMC Developmental Biology, 2019, 19, 19.	2.1	18
14	MGAT1 and Complex N-Glycans Regulate ERK Signaling During Spermatogenesis. Scientific Reports, 2018, 8, 2022.	3.3	16
15	Inhibition of Delta-induced Notch signaling using fucose analogs. Nature Chemical Biology, 2018, 14, 65-71.	8.0	46
16	Multiple roles for Oâ€glycans in Notch signalling. FEBS Letters, 2018, 592, 3819-3834.	2.8	55
17	EOGT and <i>O</i> -GlcNAc on secreted and membrane proteins. Biochemical Society Transactions, 2017, 45, 401-408.	3.4	28
18	Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nature Communications, 2017, 8, 578.	12.8	32

#	Article	IF	CITATIONS
19	O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. ELife, 2017, 6, .	6.0	82
20	Notch Ligand Binding Assay Using Flow Cytometry. Bio-protocol, 2017, 7, .	0.4	6
21	What Have We Learned from Glycosyltransferase Knockouts in Mice?. Journal of Molecular Biology, 2016, 428, 3166-3182.	4.2	74
22	Lunatic, Manic, and Radical Fringe Each Promote T and B Cell Development. Journal of Immunology, 2016, 196, 232-243.	0.8	46
23	Notch Receptor-Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence and Niche Retention. Stem Cells, 2015, 33, 2280-2293.	3.2	34
24	Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology, 2015, 25, 1323-1324.	2.5	818
25	GnT1IP-L specifically inhibits MGAT1 in the Golgi via its luminal domain. ELife, 2015, 4, .	6.0	17
26	Human Liver Cell Trafficking Mutants: Characterization and Whole Exome Sequencing. PLoS ONE, 2014, 9, e87043.	2.5	0
27	Chinese hamster ovary mutants for glycosylation engineering of biopharmaceuticals. Pharmaceutical Bioprocessing, 2014, 2, 359-361.	0.8	3
28	Reduction in Golgi apparatus dimension in the absence of a residential protein, N-acetylglucosaminyltransferase V. Histochemistry and Cell Biology, 2014, 141, 153-164.	1.7	9
29	Galectin-1 Pulls the Strings on VEGFR2. Cell, 2014, 156, 625-626.	28.9	20
30	Antibodies That Detect O-Linked \hat{l}^2 -d-N-Acetylglucosamine on the Extracellular Domain of Cell Surface Glycoproteins. Journal of Biological Chemistry, 2014, 289, 11132-11142.	3.4	56
31	Galectins CLIC cargo inside. Nature Cell Biology, 2014, 16, 506-507.	10.3	9
32	Rapid Assays for Lectin Toxicity and Binding Changes that Reflect Altered Glycosylation in Mammalian Cells. Current Protocols in Chemical Biology, 2014, 6, 117-133.	1.7	6
33	Downregulating Notch Signaling in KrasG12D/+ Mice Inhibits Both T-Cell Leukemia and Myeloproliferative Neoplasm in a Cell-Autonomous Manner. Blood, 2014, 124, 261-261.	1.4	0
34	Loss of Notch Receptor-Ligand Engagement Leads to Increased Hematopoietic Stem and Progenitor Cell Egress and Mobilization. Blood, 2014, 124, 652-652.	1.4	0
35	Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer. Glycobiology, 2013, 23, 1477-1490.	2.5	28
36	The EGF Repeat-Specific O-GlcNAc-Transferase Eogt Interacts with Notch Signaling and Pyrimidine Metabolism Pathways in Drosophila. PLoS ONE, 2013, 8, e62835.	2.5	61

#	Article	IF	CITATIONS
37	Glycanâ€dependent Control of Myelopoiesis. FASEB Journal, 2013, 27, 335.1.	0.5	О
38	Galactose Differentially Modulates Lunatic and Manic Fringe Effects on Delta1-induced NOTCH Signaling. Journal of Biological Chemistry, 2012, 287, 474-483.	3.4	34
39	The bisecting GlcNAc in cell growth control and tumor progression. Glycoconjugate Journal, 2012, 29, 609-618.	2.7	73
40	Complex N-Glycans Are Essential, but Core 1 and 2 Mucin O-Glycans, O-Fucose Glycans, and NOTCH1 Are Dispensable, for Mammalian Spermatogenesis1. Biology of Reproduction, 2012, 86, 179.	2.7	50
41	Tandem mass spectrometry identifies many mouse brain <i>O</i> -GlcNAcylated proteins including EGF domain-specific <i>O</i> -GlcNAc transferase targets. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7280-7285.	7.1	275
42	Golgi Glycosylation. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005199-a005199.	5. 5	325
43	Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions. Blood, 2011, 117, 5652-5662.	1.4	93
44	Effects of varying Notch1 signal strength on embryogenesis and vasculogenesis in compound mutant heterozygotes. BMC Developmental Biology, 2010, 10, 36.	2.1	10
45	Slc35c2 Promotes Notch1 Fucosylation and Is Required for Optimal Notch Signaling in Mammalian Cells. Journal of Biological Chemistry, 2010, 285, 36245-36254.	3.4	43
46	A testis-specific regulator of complex and hybrid N-glycan synthesis. Journal of Cell Biology, 2010, 190, 893-910.	5.2	41
47	Lunatic Fringe Enhances Competition for Delta-Like Notch Ligands but Does Not Overcome Defective Pre-TCR Signaling during Thymocyte \hat{l}^2 -Selection In Vivo. Journal of Immunology, 2010, 185, 4609-4617.	0.8	18
48	Glycomics Profiling of Chinese Hamster Ovary Cell Glycosylation Mutants Reveals N-Glycans of a Novel Size and Complexity. Journal of Biological Chemistry, 2010, 285, 5759-5775.	3.4	188
49	Roles of Glycosylation in Notch Signaling. Current Topics in Developmental Biology, 2010, 92, 131-164.	2.2	118
50	The Bisecting GlcNAc on <i>N</i> -Glycans Inhibits Growth Factor Signaling and Retards Mammary Tumor Progression. Cancer Research, 2010, 70, 3361-3371.	0.9	101
51	Mutational and functional analysis of Large in a novel CHO glycosylation mutant. Glycobiology, 2009, 19, 971-986.	2.5	34
52	Symbol nomenclature for glycan representation. Proteomics, 2009, 9, 5398-5399.	2.2	162
53	Regulation of Notch signaling during T―and Bâ€cell development by <i>O</i> à€fucose glycans. Immunological Reviews, 2009, 230, 201-215.	6.0	69
54	In vivo consequences of deleting EGF repeats 8–12 including the ligand binding domain of mouse Notch1. BMC Developmental Biology, 2008, 8, 48.	2.1	22

#	Article	IF	CITATIONS
55	Intestinal Deletion of Pofut1 in the Mouse Inactivates Notch Signaling and Causes Enterocolitis. Gastroenterology, 2008, 135, 849-860.e6.	1.3	71
56	O-fucosylation of muscle agrin determines its ability to cluster acetylcholine receptors. Molecular and Cellular Neurosciences, 2008, 39, 452-464.	2.2	34
57	Glucose: A Novel Regulator of Notch Signaling. ACS Chemical Biology, 2008, 3, 210-213.	3.4	7
58	Genes contributing to prion pathogenesis. Journal of General Virology, 2008, 89, 1777-1788.	2.9	116
59	Roles of Pofut1 and O-Fucose in Mammalian Notch Signaling. Journal of Biological Chemistry, 2008, 283, 13638-13651.	3.4	158
60	Mouse fertility is enhanced by oocyteâ€specific loss of core 1â€derived Oâ€glycans. FASEB Journal, 2008, 22, 2273-2284.	0.5	32
61	The $\langle i \rangle O \langle i \rangle$ -fucose glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1539-1544.	7.1	70
62	Fertilization in mouse does not require terminal galactose or N-acetylglucosamine on the zona pellucida glycans. Journal of Cell Science, 2007, 120, 1341-1349.	2.0	68
63	The Threonine That Carries Fucose, but Not Fucose, Is Required for Cripto to Facilitate Nodal Signaling. Journal of Biological Chemistry, 2007, 282, 20133-20141.	3.4	54
64	New liver cell mutants defective in the endocytic pathway. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1741-1749.	2.6	4
65	A Method to the Madness of N-Glycan Complexity?. Cell, 2007, 129, 27-29.	28.9	32
66	Regulation of Notch signaling by glycosylation. Current Opinion in Structural Biology, 2007, 17, 530-535.	5.7	121
67	Lectinâ€Resistant CHO Glycosylation Mutants. Methods in Enzymology, 2006, 416, 159-182.	1.0	184
68	The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Developmental Biology, 2006, 293, 565-580.	2.0	127
69	Expression of Notch signaling pathway genes in mouse embryos lacking \hat{l}^24 galactosyltransferase-1. Gene Expression Patterns, 2006, 6, 376-382.	0.8	33
70	Evolutionary Origins of Notch Signaling in Early Development. Cell Cycle, 2006, 5, 274-278.	2.6	24
71	Roles of Oâ€Fucose Glycans in Notch Signaling Revealed by Mutant Mice. Methods in Enzymology, 2006, 417, 127-136.	1.0	18
72	Notch1-Induced Transformation of RKE-1 Cells Requires Up-regulation of Cyclin D1. Cancer Research, 2006, 66, 7562-7570.	0.9	50

#	Article	IF	Citations
73	Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology, 2006, 16, 305-317.	2.5	130
74	Canonical Notch Signaling Is Dispensable for Early Cell Fate Specifications in Mammals. Molecular and Cellular Biology, 2005, 25, 9503-9508.	2.3	53
75	Human Sperm Do Not Bind to Rat Zonae Pellucidae Despite the Presence of Four Homologous Glycoproteins. Journal of Biological Chemistry, 2005, 280, 12721-12731.	3.4	72
76	Mouse Large Can Modify Complex N- and Mucin O-Glycans on \hat{l}_{\pm} -Dystroglycan to Induce Laminin Binding. Journal of Biological Chemistry, 2005, 280, 20851-20859.	3.4	89
77	Inactivation of the Mgat1 Gene in Oocytes Impairs Oogenesis, but Embryos Lacking Complex and Hybrid N - Glycans Develop and Implant. Molecular and Cellular Biology, 2004, 24, 9920-9929.	2.3	90
78	Molecular analysis of three gain-of-function CHO mutants that add the bisecting GlcNAc to N-glycans. Glycobiology, 2004, 15, 43-53.	2.5	40
79	Suppressors of $\hat{A}(1,3)$ fucosylation identified by expression cloning in the LEC11B gain-of-function CHO mutant. Glycobiology, 2004, 15, 259-269.	2.5	18
80	The Lec23 Chinese Hamster Ovary Mutant Is a Sensitive Host for Detecting Mutations in α-Glucosidase I That Give Rise to Congenital Disorder of Glycosylation IIb (CDG IIb). Journal of Biological Chemistry, 2004, 279, 49894-49901.	3.4	20
81	LEC12 and LEC29 Gain-of-Function Chinese Hamster Ovary Mutants Reveal Mechanisms for Regulating VIM-2 Antigen Synthesis and E-selectin Binding. Journal of Biological Chemistry, 2004, 279, 49716-49726.	3.4	11
82	Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5234-5239.	7.1	351
83	Lec3 Chinese Hamster Ovary Mutants Lack UDP-N-acetylglucosamine 2-Epimerase Activity Because of Mutations in the Epimerase Domain of the Gne Gene. Journal of Biological Chemistry, 2003, 278, 53045-53054.	3.4	36
84	Five Lec1 CHO cell mutants have distinct Mgat1 gene mutations that encode truncated N-acetylglucosaminyltransferase I. Glycobiology, 2003, 13, 43-50.	2.5	103
85	Reduced hepatocyte proliferation is the basis of retarded liver tumor progression and liver regeneration in mice lacking N-acetylglucosaminyltransferase III. Cancer Research, 2003, 63, 7753-9.	0.9	21
86	Truncated, InactiveN-Acetylglucosaminyltransferase III (GlcNAc-TIII) Induces Neurological and Other Traits Absent in Mice That Lack GlcNAc-TIII. Journal of Biological Chemistry, 2002, 277, 26300-26309.	3.4	45
87	Identification of a Drosophila Gene Encoding Xylosylprotein \hat{l}^2 4-Galactosyltransferase That Is Essential for the Synthesis of Glycosaminoglycans and for Morphogenesis. Journal of Biological Chemistry, 2002, 277, 46280-46288.	3.4	43
88	A Novel Casein Kinase 2 α-Subunit Regulates Membrane Protein Traffic in the Human Hepatoma Cell Line HuH-7. Journal of Biological Chemistry, 2001, 276, 2075-2082.	3.4	58
89	Independent Lec1A CHO Glycosylation Mutants Arise from Point Mutations in N-Acetylglucosaminyltransferase I That Reduce Affinity for Both Substrates. Molecular Consequences Based on the Crystal Structure of GlcNAc-TI,. Biochemistry, 2001, 40, 8765-8772.	2.5	22
90	Role of the Lewisx Glycan Determinant in Corneal Epithelial Cell Adhesion and Differentiation. Journal of Biological Chemistry, 2001, 276, 21714-21723.	3.4	21

#	Article	IF	CITATIONS
91	Point Mutations Identified in Lec8 Chinese Hamster Ovary Glycosylation Mutants That Inactivate Both the UDP-galactose and CMP-sialic Acid Transporters. Journal of Biological Chemistry, 2001, 276, 26291-26300.	3.4	89
92	Modification of Epidermal Growth Factor-like Repeats with O-Fucose. Journal of Biological Chemistry, 2001, 276, 40338-40345.	3.4	220
93	Chinese Hamster Ovary (CHO) Cells May Express Six Î ² 4-Galactosyltransferases (Î ² 4GalTs). Journal of Biological Chemistry, 2001, 276, 13924-13934.	3.4	61
94	Fringe is a glycosyltransferase that modifies Notch. Nature, 2000, 406, 369-375.	27.8	792
95	$\hat{l}\pm(1,3)$ Fucosyltransferases Expressed by the Gain-of-Function Chinese Hamster Ovary Glycosylation Mutants LEC12, LEC29, and LEC30. Archives of Biochemistry and Biophysics, 2000, 375, 322-332.	3.0	22
96	A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome). Glycobiology, 1999, 9, 1389-1396.	2.5	165
97	The Gain-of-Function Chinese Hamster Ovary Mutant LEC11B Expresses One of Two Chinese Hamster FUT6 Genes Due to the Loss of a Negative Regulatory Factor. Journal of Biological Chemistry, 1999, 274, 10439-10450.	3.4	31
98	Gain-of-function Chinese Hamster Ovary Mutants LEC18 and LEC14 Each Express a Novel N-Acetylglucosaminyltransferase Activity. Journal of Biological Chemistry, 1998, 273, 14090-14098.	3.4	13
99	Mammalian cytidine 5′-monophosphateN-acetylneuraminic acid synthetase: A nuclear protein with evolutionarily conserved structural motifs. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9140-9145.	7.1	127
100	Complex N-glycans in Mgat1 null preimplantation embryos arise from maternal Mgat1 RNA. Glycobiology, 1997, 7, 913-919.	2.5	38
101	A Comparison of the Fine Saccharide-Binding Specificity of Dioclea grandiflora Lectin and Concanavalin A. FEBS Journal, 1996, 242, 320-326.	0.2	47
102	LEC14, a Dominant Chinese Hamster Ovary Glycosylation Mutant Expresses Complex N-Glycans with a New N-Acetylglucosamine Residue in the Core Region. Journal of Biological Chemistry, 1996, 271, 7484-7493.	3.4	15
103	A Point Mutation Causes Mistargeting of Golgi GlcNAc-TV in the Lec4A Chinese Hamster Ovary Glycosylation Mutant. Journal of Biological Chemistry, 1996, 271, 27462-27469.	3.4	33
104	CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases. Glycobiology, 1996, 6, 695-699.	2.5	65
105	Glycosyltransferase mutants: key to new insights in glycobiology. FASEB Journal, 1995, 9, 1436-1444.	0.5	92
106	Human Hepatoma Cell Mutant Defective in Cell Surface Protein Trafficking. Journal of Biological Chemistry, 1995, 270, 16107-16113.	3.4	30
107	lec32 Is a New Mutation in Chinese Hamster Ovary Cells That Essentially Abrogates CMP-N-acetylneuraminic Acid Synthetase Activity. Journal of Biological Chemistry, 1995, 270, 30415-30421.	3.4	33
108	Regulation of N-linked glycosylation. Neuronal cell-specific expression of a 5′ extended transcript from the gene encoding N-acetylglucosaminyltranserase I. Glycobiology, 1995, 5, 279-279.	2.5	1

#	Article	IF	CITATIONS
109	LEC18, a Dominant Chinese Hamster Ovary Glycosylation Mutant Synthesizes N-Linked Carbohydrates with a Novel Core Structure. Journal of Biological Chemistry, 1995, 270, 30294-30302.	3.4	18
110	Cloning and chromosomal mapping of the mouse Mgat3 gene encoding N-acetylglucosaminyltransferase III. Gene, 1995, 164, 295-300.	2.2	45
111	Regulation of N-linked glycosylation. Neuronal cell-specific expression of a 5' extended transcript from the gene encoding N-acetylglucosaminyltransferase I. Glycobiology, 1994, 4, 703-712.	2.5	24
112	Mutants in dolichol synthesis: conversion of polyprenol to dolichol appears to be a rate-limiting step in dolichol synthesis. Glycobiology, 1993, 3, 481-488.	2.5	23
113	Cloning and expression of the murine gene and chromosomal location of the human gene encoding N-acetylglucosaminyltransferase I. Glycobiology, 1992, 2, 383-393.	2.5	69
114	Glycosylation engineering. Glycobiology, 1992, 2, 99-107.	2.5	120
115	A subclass of cell surface carbohydrates revealed by a CHO mutant with two glycosylation mutations. Glycobiology, 1991, 1, 307-314.	2.5	28
116	Lectin-resistant CHO cells: Selection of seven new mutants resistant to ricin. Somatic Cell and Molecular Genetics, 1990, 16, 211-223.	0.7	23
117	Novel genetic instability associated with a developmental regulated glycosyltransferase locus in Chinese hamster ovary cells. Somatic Cell and Molecular Genetics, 1989, 15, 387-400.	0.7	16
118	[36] Biochemical characterization of animal cell glycosylation mutants. Methods in Enzymology, 1987, 138, 443-458.	1.0	26
119	Glycosylation mutants and the functions of mammalian carbohydrates. Trends in Genetics, 1987, 3, 77-81.	6.7	75
120	Two chinese hamster ovary glycosylation mutants affected in the conversion of GDP-mannose to GDP-fucose. Archives of Biochemistry and Biophysics, 1986, 249, 533-545.	3.0	75
121	Lectin-resistant CHO cells: Selection of four new pea lectin-resistant phenotypes. Somatic Cell and Molecular Genetics, 1986, 12, 51-62.	0.7	25
122	High-frequency transfection of CHO cells using polybrene. Somatic Cell and Molecular Genetics, 1986, 12, 237-244.	0.7	150
123	Cytotoxicity of plant lectins for mouse embryonal carcinoma cells. Somatic Cell and Molecular Genetics, 1984, 10, 435-443.	0.7	19
124	Isolation and partial characterization of lectin-resistant F9 cells. Somatic Cell and Molecular Genetics, 1984, 10, 445-454.	0.7	10
125	Translocation across golgi vesicle membranes: A CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell, 1984, 39, 295-299.	28.9	275
126	1H NMR spectroscopy of carbohydrates from the G glycoprotein of vesicular stomatitis virus grown in parental and Lec4 Chinese hamster ovary cells. Archives of Biochemistry and Biophysics, 1984, 230, 363-374.	3.0	41

#	Article	IF	CITATION
127	Lectin-resistant CHO cells: Selection of new mutant phenotypes. Somatic Cell Genetics, 1983, 9, 593-608.	2.7	88
128	Regulatory mutations in CHO cells induce expression of the mouse embryonic antigen SSEA-1. Cell, 1983, 35, 303-309.	28.9	50
129	[11] Selection of lectin-resistant mutants of animal cells. Methods in Enzymology, 1983, 96, 157-184.	1.0	92
130	Carbohydrate heterogeneity of vesicular stomatitis virus G glycoprotein allows localization of the defect in a glycosylation mutant of CHO cells. Archives of Biochemistry and Biophysics, 1982, 219, 128-139.	3.0	33
131	Microheterogeneity among carbohydrate structures at the cell surface may be important in recognition phenomena. Cell, 1981, 23, 763-769.	28.9	48
132	Altered Glycolipids of CHO Cells Resistant to Wheat Germ Agglutinin. ACS Symposium Series, 1980, , 213-221.	0.5	13
133	Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistant CHO cells. Cell, 1978, 13, 515-526.	28.9	147
134	Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genetics, 1977, 3, 391-405.	2.7	162
135	Selection and characterization of chinese hamster ovary cells resistant to the cytotoxicity of lectins. In Vitro, 1976, 12, 208-215.	1.2	24
136	Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin. Somatic Cell Genetics, 1975, 1, 3-26.	2.7	84
137	Selection and characterization of eight phenotypically distinct lines of lectin-resistant chinese hamster ovary cells. Cell, 1975, 6, 121-128.	28.9	284
138	Chemical and biological properties of bacterial flagellin following iodination and oxidation by chloramine-T. Immunochemistry, 1972, 9, 853-872.	1.2	23