Marco P Monopoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3370310/publications.pdf

Version: 2024-02-01

59 12,513 35 papers citations h-index

61 61 61 14720 all docs docs citations times ranked citing authors

59

g-index

#	Article	IF	CITATIONS
1	Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology, 2012, 7, 779-786.	31.5	2,274
2	Physicalâ^'Chemical Aspects of Protein Corona: Relevance to <i>in Vitro</i> and <i>in Vivo</i> Biological Impacts of Nanoparticles. Journal of the American Chemical Society, 2011, 133, 2525-2534.	13.7	1,577
3	Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013, 8, 137-143.	31.5	1,516
4	Proteinâ^Nanoparticle Interactions: Opportunities and Challenges. Chemical Reviews, 2011, 111, 5610-5637.	47.7	1,242
5	What the Cell "Sees―in Bionanoscience. Journal of the American Chemical Society, 2010, 132, 5761-5768.	13.7	1,075
6	Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. ACS Nano, 2012, 6, 5845-5857.	14.6	918
7	The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1159-1168.	3.3	349
8	Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Marine Environmental Research, 2015, 111, 34-40.	2.5	291
9	Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicology and Environmental Safety, 2016, 123, 18-25.	6.0	280
10	Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials, 2010, 31, 9511-9518.	11.4	266
11	The "Sweet―Side of the Protein Corona: Effects of Glycosylation on Nanoparticle–Cell Interactions. ACS Nano, 2015, 9, 2157-2166.	14.6	184
12	Nanoparticle coronas take shape. Nature Nanotechnology, 2011, 6, 11-12.	31.5	183
13	The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution. ACS Nano, 2016, 10, 10471-10479.	14.6	154
14	Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins. Environmental Research, 2016, 150, 73-81.	7.5	144
15	Surface Coatings Shape the Protein Corona of SPIONs with Relevance to Their Application in Vivo. Langmuir, 2012, 28, 14983-14991.	3.5	136
16	Influence of the Physiochemical Properties of Superparamagnetic Iron Oxide Nanoparticles on Amyloid \hat{l}^2 Protein Fibrillation in Solution. ACS Chemical Neuroscience, 2013, 4, 475-485.	3.5	132
17	Influence of Size and Shape on the Anatomical Distribution of Endotoxin-Free Gold Nanoparticles. ACS Nano, 2017, 11, 5519-5529.	14.6	131
18	Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. Journal of Hazardous Materials, 2015, 297, 92-100.	12.4	114

#	Article	IF	CITATIONS
19	Formation and Characterization of the Nanoparticle–Protein Corona. Methods in Molecular Biology, 2013, 1025, 137-155.	0.9	111
20	Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale, 2013, 5, 8656.	5.6	98
21	Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnology, 2020, 11, .	3.7	91
22	Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquatic Toxicology, 2014, 153, 27-38.	4.0	84
23	Elution of Labile Fluorescent Dye from Nanoparticles during Biological Use. PLoS ONE, 2011, 6, e25556.	2.5	82
24	Transferrin Coated Nanoparticles: Study of the Bionano Interface in Human Plasma. PLoS ONE, 2012, 7, e40685.	2.5	80
25	Magnetic Nanoparticles to Recover Cellular Organelles and Study the Time Resolved Nanoparticleâ€Cell Interactome throughout Uptake. Small, 2014, 10, 3307-3315.	10.0	59
26	Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact, 2018, 10, 97-107.	4.5	59
27	A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment. Nanoscale, 2016, 8, 17322-17332.	5.6	58
28	Nanobiotechnology: Nanoparticle coronas take shape. Nature Nanotechnology, 2011, 6, 11-12.	31.5	55
29	Enrichment of immunoregulatory proteins in the biomolecular corona of nanoparticles within human respiratory tract lining fluid. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1033-1043.	3.3	54
30	The protein corona of dendrimers: PAMAM binds and activates complement proteins in human plasma in a generation dependent manner. RSC Advances, 2012, 2, 11245.	3.6	53
31	Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials. Nanoscale, 2015, 7, 15268-15276.	5.6	52
32	Surfactant Titration of Nanoparticle–Protein Corona. Analytical Chemistry, 2014, 86, 12055-12063.	6.5	49
33	Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology, 2016, 10, 1431-1441.	3.0	49
34	The Protein Corona Mediates the Impact of Nanomaterials and Slows Amyloid Beta Fibrillation. ChemBioChem, 2013, 14, 568-572.	2.6	48
35	Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines. Archives of Toxicology, 2018, 92, 633-649.	4.2	41
36	Notch signalling becomes transiently attenuated during long-term memory consolidation in adult Wistar rats. Neurobiology of Learning and Memory, 2007, 88, 342-351.	1.9	31

3

#	Article	IF	Citations
37	Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	30
38	Detecting the shape of anisotropic gold nanoparticles in dispersion with single particle extinction and scattering. Nanoscale, 2017, 9, 2778-2784.	5.6	28
39	Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus. Proteomics, 2011, 11, 4189-4201.	2.2	27
40	Efficacy assessment of self-assembled PLGA-PEG-PLGA nanoparticles: Correlation of nano-bio interface interactions, biodistribution, internalization and gene expression studies. International Journal of Pharmaceutics, 2017, 533, 389-401.	5.2	27
41	Identification of physicochemical properties that modulate nanoparticle aggregation in blood. Beilstein Journal of Nanotechnology, 2020, 11, 550-567.	2.8	26
42	An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. Journal of Proteomics, 2016, 137, 52-58.	2.4	25
43	The dendrimer impact on vesicles can be tuned based on the lipid bilayer charge and the presence of albumin. Soft Matter, 2013, 9, 8862-8870.	2.7	20
44	No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-19. Nanomedicine, 2020, 15, 2411-2427.	3.3	19
45	Nanoparticle Biomolecular Corona-Based Enrichment of Plasma Glycoproteins for N-Glycan Profiling and Application in Biomarker Discovery. ACS Nano, 2022, 16, 5463-5475.	14.6	17
46	COMPARISONS OF NANOPARTICLE PROTEIN CORONA COMPLEXES ISOLATED WITH DIFFERENT METHODS. Nano LIFE, 2013, 03, 1343004.	0.9	16
47	Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation. Nanotoxicology, 2016, 10, 1395-1403.	3.0	16
48	Endogenous exosome labelling with an amphiphilic NIR-fluorescent probe. Chemical Communications, 2018, 54, 7219-7222.	4.1	16
49	A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations of Shape-Dependent Biological Effects and Immunomodulation. ACS Nano, 2022, 16, 1547-1559.	14.6	16
50	Synthesis, characterization and programmable toxicity of iron oxide nanoparticles conjugated with <scp>d</scp> -amino acid oxidase. RSC Advances, 2017, 7, 1439-1442.	3.6	15
51	Synthesis of \hat{I}_{\pm} -Quartz with Controlled Properties for the Investigation of the Molecular Determinants in Silica Toxicology. Crystal Growth and Design, 2016, 16, 2394-2403.	3.0	14
52	In depth characterisation of the biomolecular coronas of polymer coated inorganic nanoparticles with differential centrifugal sedimentation. Scientific Reports, 2021, 11, 6443.	3.3	14
53	Probing the glycans accessibility in the nanoparticle biomolecular corona. Journal of Colloid and Interface Science, 2022, 613, 563-574.	9.4	14
54	Differences in the coronal proteome acquired by particles depositing in the lungs of asthmatic versus healthy humans. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2517-2521.	3.3	12

#	Article	IF	CITATION
55	Unravelling Malaria Antigen Binding to Antibodyâ€Gold Nanoparticle Conjugates. Particle and Particle Systems Characterization, 2016, 33, 906-915.	2.3	10
56	Biological in situ characterization of polymeric microbubble contrast agents. International Journal of Biochemistry and Cell Biology, 2016, 75, 232-243.	2.8	9
57	Molecular Aspects of the Interaction with Gram-Negative and Gram-Positive Bacteria of Hydrothermal Carbon Nanoparticles Associated with Bac8c ^{2,5Leu} Antimicrobial Peptide. ACS Omega, 2022, 7, 16402-16413.	3.5	9
58	Human Plasma Protein Adsorption onto Alumina Nanoparticles Relevant to Orthopedic Wear. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 145-155.	1.6	5
59	Efficacy, biocompatibility and degradability of carbon nanoparticles for photothermal therapy of lung cancer. Nanomedicine, 2021, 16, 689-707.	3.3	5