Simon N Wood

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3369875/publications.pdf
Version: 2024-02-01

Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric
1 Generalized Linear Models. Journal of the Royal Statistical Society Series B: Statistical Methodology 2011, 73, 3-36.

2 Generalized Additive Models. , 0, , . 4,529

3 Generalized Additive Models. , 0, , .
3,817

4 Thin Plate Regression Splines. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2003, 65, 95-114.
2.2

Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models.
$5 \quad \begin{aligned} & \text { Stable and Efficient Multiple Smoothing Parameter Estimation for Cen } \\ & \text { Journal of the American Statistical Association, 2004, 99, 673-686. }\end{aligned}$
$3.1 \quad 1,472$

Making mistakes when predicting shifts in species range in response to global warming. Nature, 1998,
391, 783-786.
27.8

984

Smoothing Parameter and Model Selection for General Smooth Models. Journal of the American
$7 \quad$ Statistical Association, 2016, 111, 1548-1563.

GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecological Modelling, 2002, 157, 157-177.
2.5

649
8

> Fast Stable Direct Fitting and Smoothness Selection for Generalized Additive Models. Journal of the

Fast Stable Direct Fitting and Smoothness Selection for Generalized Additive M
Royal Statistical Society Series B: Statistical Methodology, 2008, 70, 495-518.
2.2

522

Practical variable selection for generalized additive models. Computational Statistics and Data
Analysis, 2011, 55, 2372-2387.
Practical variable selection for generalized additive models. Computational Statistics and Data
Analysis, 2011, 55, 2372-2387.
1.2

512

> 11 Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models. Biometrics,
> $2006,62,1025-1036$.
1.4

410

12 Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 2010, 466, 1102-1104.
27.8

345

13 WHY DO POPULATIONS CYCLE? A SYNTHESIS OF STATISTICAL AND MECHANISTIC MODELING APPROACHES.
Ecology, 1999, 80, 1789-1805.
3.2

300

14 On p-values for smooth components of an extended generalized additive model. Biometrika, 2013, 100, 221-228.
2.4

245

15 Coverage Properties of Confidence Intervals for Generalized Additive Model Components.
Scandinavian Journal of Statistics, 2012, 39, 53-74.
1.4

Model averaging in ecology: a review of Bayesian, informationâ€theoretic, and tactical approaches for predictive inference. Ecological Monographs, 2018, 88, 485-504.

\#	Article	IF	Citations
19	Shape constrained additive models. Statistics and Computing, 2015, 25, 543-559.	1.5	179
20	Correcting for Variation in Recording Effort in Analyses of Diversity Hotspots. Biodiversity Letters, 1993, 1, 39.	0.5	146
21	ON CONFIDENCE INTERVALS FOR GENERALIZED ADDITIVE MODELS BASED ON PENALIZED REGRESSION SPLINES. Australian and New Zealand Journal of Statistics, 2006, 48, 445-464.	0.9	140
22	Straightforward intermediate rank tensor product smoothing in mixed models. Statistics and Computing, 2013, 23, 341-360.	1.5	136
23	DYNAMICAL EFFECTS OF PLANT QUALITY AND PARASITISM ON POPULATION CYCLES OF LARCH BUDMOTH. Ecology, 2003, 84, 1207-1214.	3.2	130
24	Soap Film Smoothing. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2008, 70, 931-955.	2.2	126
25	Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data. Journal of the American Statistical Association, 2017, 112, 1199-1210.	3.1	109
26	Superâ€"sensitivity to structure in biological models. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 565-570.	2.6	106
27	Stageâ€specific mortality of Calanus spp. under different predation regimes. Limnology and Oceanography, 2002, 47, 636-645.	3.1	99
28	Scalable Visualization Methods for Modern Generalized Additive Models. Journal of Computational and Graphical Statistics, 2020, 29, 78-86.	1.7	98
29	Analyzing the Time Course of Pupillometric Data. Trends in Hearing, 2019, 23, 233121651983248.	1.3	95
30	Ocean-scale modelling of the distribution, abundance, and seasonal dynamics of the copepod Calanus finmarchicus. Marine Ecology - Progress Series, 2006, 313, 173-192.	1.9	92
31	Fast Calibrated Additive Quantile Regression. Journal of the American Statistical Association, 2021, 116, 1402-1412.	3.1	91

32 PARTIALLY SPECIFIED ECOLOGICAL MODELS. Ecological Monographs, 2001, 71, 1-25.
 $5.4 \quad 88$

33 Minimizing Model Fitting Objectives That Contain Spurious Local Minima by Bootstrap Restarting.
1.486

Biometrics, 2001, 57, 240-244.

34 A simple test for random effects in regression models. Biometrika, 2013, 100, 1005-1010.
2.4

84

\#	Article	IF	
37	Monotonic Smoothing Splines Fitted by Cross Validation. SIAM Journal of Scientific Computing, 1994, 15, 1126-1133.	2.8	60
38	Mortality estimation for planktonic copepods: Pseudocalanus newmani in a temperate fjord. Limnology and Oceanography, 1996, 41, 126-135.	3.1	59
39	POPULATION CYCLES IN THE PINE LOOPER MOTH: DYNAMICAL TESTS OF MECHANISTIC HYPOTHESES. Ecological Monographs, 2005, 75, 259-276.	5.4	56
40	Spaceâ€time modelling of blue ling for fisheries stock management. Environmetrics, 2013, 24, 109-119.	1.4	55
41	Space, time and persistence of virulent pathogens. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 673-680.	2.6	54
42	On quantile quantile plots for generalized linear models. Computational Statistics and Data Analysis, 2012, 56, 2404-2409.	1.2	52
43	The inevitability of mortality. ICES Journal of Marine Science, 1995, 52, 517-522.	2.5	49
44	FORMULATING AND TESTING A PARTIALLY SPECIFIED DYNAMIC ENERGY BUDGET MODEL. Ecology, 2004, 85, 3132-3139.	3.2	48
45	Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv. Journal of Statistical Software, 2016, 75,	3.7	48
46	Modelling the basin-scale demography of Calanus finmarchicus in the north-east Atlantic. Fisheries Oceanography, 2005, 14, 333-358.	1.7	46
47	A Generalized Fellner-Schall Method for Smoothing Parameter Optimization with Application to Tweedie Location, Scale and Shape Models. Biometrics, 2017, 73, 1071-1081.	1.4	46
48	A Comparison of Inferential Methods for Highly Nonlinear State Space Models in Ecology and Epidemiology. Statistical Science, 2016, 31, .	2.8	44
49	The biogeography of scarce vascular plants in Britain with respect to habitat preference, dispersal ability and reproductive biology. Biological Conservation, 1994, 70, 149-157.	4.1	43
50	Inferring mechanism from time-series data: Delay-differential equations. Physica D: Nonlinear Phenomena, 1997, 110, 182-194.	2.8	42
51	A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses. Journal of the American Statistical Association, 2017, 112, 484-496.	3.1	40
52	Persistence ofMetarhizium flavovirideand Consequences for Biological Control of Grasshoppers and Locusts. Pest Management Science, 1997, 49, 47-55.	0.4	39
53	Inference and computation with generalized additive models and their extensions. Test, 2020, 29, 307-339.	1.1	38

```
5 5 ~ I n s t a b i l i t y ~ i n ~ M o r t a l i t y ~ E s t i m a t i o n ~ S c h e m e s ~ R e l a t e d ~ t o ~ S t a g e - S t r u c t u r e ~ P o p u l a t i o n ~ M o d e l s .
Mathematical Medicine and Biology, 1989, 6, 47-68.
55 Mathematical Medicine and Biology, 1989, 6, 47-68.
```

P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data.
$56 \quad$ P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data.
Statistics and Computing, 2017, 27, 985-989.
1.5
$57 \quad$ Faster model matrix crossproducts for large generalized linear models with discretized covariates.
1.5 Statistics and Computing, 2020, 30, 19-25.
1.2

34

34 Statistics and Computing, 2020, 30, 19-25.

31

58 Trade-Offs, Elasticities and the Comparative Method. Journal of Ecology, 1994, 82, 951.
4.0

27
59 Simulating spatially and physiologically structured populations. Journal of Animal Ecology, 2001, 70,
$881-894$.
$2.8 \quad 27$

60 A Model-Based Approach to Designing a Fishery-Independent Survey. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 1-21.
$1.4 \quad 27$

61 | Inferring UK COVIDâ€ł19 fatal infection trajectories from daily mortality data: Were infections already in |
| :--- |
| decline before the UK lockdowns?. Biometrics, $2022,78,1127-1140$. |

Characterization of stage-classified biological processes using multinomial models: a case study ofanchovy (Engraulis encrasicolus) eggs in the Bay of Biscay. Canadian Journal of Fisheries and Aquatic
1.4 Sciences, 2007, 64, 539-553.

63 Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals. Journal of
Turbomachinery, 2013, 135, .
$1.7 \quad 25$

64 qgam: Bayesian Nonparametric Quantile Regression Modeling in <i>R</i>. Journal of Statistical
Software, 2021, 100,.
3.7

24
Finite area smoothing with generalized distance splines. Environmental and Ecological Statistics,
$2014,21,715-731$.

74 Computing AIC for black-box models using generalized degrees of freedom: A comparison with
80 Simplified integrated nested Laplace approximation. Biometrika, 2019, , .
81 Was R \< 1 before the English lockdowns? On modelling mechanistic detail, causality and inference
How to Estimate Life History Stage Durations from Stage Structured Population Data. Journal of

