Stephanie C Werner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336909/publications.pdf Version: 2024-02-01

STEDHANIE C WEDNED

#	Article	IF	CITATIONS
1	Orientale Ejecta at the Apollo 14 Landing Site Implies a 200-million-year Stratigraphic Time Shift on the Moon. Planetary Science Journal, 2022, 3, 65.	3.6	4
2	Planetary Terrestrial Analogues Library Project: 3. Characterization of Samples With MicrOmega. Astrobiology, 2022, , .	3.0	0
3	Early impact chronology of the icy regular satellites of the outer solar system. Icarus, 2021, 358, 114184.	2.5	8
4	ExoMars Raman Laser Spectrometer: A Tool to Semiquantify the Serpentinization Degree of Olivine-Rich Rocks on Mars. Astrobiology, 2021, 21, 307-322.	3.0	13
5	Mineralogical and Spectral (Near-Infrared) Characterization of Fe-Rich Vermiculite-Bearing Terrestrial Deposits and Constraints for Mineralogy of Oxia Planum, ExoMars 2022 Landing Site. Astrobiology, 2021, 21, 997-1016.	3.0	7
6	The Planetary Terrestrial Analogues Library (PTAL) – An exclusive lithological selection of possible martian earth analogues. Planetary and Space Science, 2021, 208, 105339.	1.7	9
7	Dynamics of Lithospheric Overturns and Implications for Venus's Surface. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006258.	3.6	13
8	Implications of Anomalous Crustal Provinces for Venus' Resurfacing History. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006340.	3.6	4
9	ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars. Astrobiology, 2020, 20, 349-363.	3.0	17
10	Onset of Giant Planet Migration before 4480 Million Years Ago. Astrophysical Journal, 2019, 881, 44.	4.5	82
11	Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117360.	3.9	14
12	Impact cratering in and around the Orientale Basin: Results from recent high-resolution remote sensing datasets. Icarus, 2019, 333, 343-355.	2.5	6
13	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	1.6	73
14	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, 667-671.	1.6	11
15	Detection of Carbonates in Martian Weathering Profiles. Journal of Geophysical Research E: Planets, 2019, 124, 989-1007.	3.6	34
16	In situ calibration of the Martian cratering chronology. Meteoritics and Planetary Science, 2019, 54, 1182-1193.	1.6	12
17	Experimental hydrothermal alteration of basaltic glass with relevance to Mars. Meteoritics and Planetary Science, 2019, 54, 357-378.	1.6	7
18	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	3.7	249

STEPHANIE C WERNER

#	Article	IF	CITATIONS
19	Formation of Simple Impact Craters in Layered Targets: Implications for Lunar Crater Morphology and Regolith Thickness. Journal of Geophysical Research E: Planets, 2018, 123, 1555-1578.	3.6	29
20	The effect of target properties on transient crater scaling for simple craters. Journal of Geophysical Research E: Planets, 2017, 122, 1704-1726.	3.6	53
21	Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology, 2017, 17, 471-510.	3.0	371
22	Dioctahedral Phyllosilicates Versus Zeolites and Carbonates Versus Zeolites Competitions as Constraints to Understanding Early Mars Alteration Conditions. Journal of Geophysical Research E: Planets, 2017, 122, 2328-2343.	3.6	20
23	Change in general relativistic precession rates due to Lidov–Kozai oscillations in Solar system. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1405-1414.	4.4	7
24	The two Suvasvesi impact structures, Finland: Argon isotopic evidence for a "false―impact crater doublet. Meteoritics and Planetary Science, 2016, 51, 966-980.	1.6	9
25	ANALYSIS OF TERRESTRIAL PLANET FORMATION BY THE GRAND TACK MODEL: SYSTEM ARCHITECTURE AND TACK LOCATION. Astrophysical Journal, 2016, 821, 75.	4.5	73
26	The selfâ€ s econdary crater population of the Hokusai crater on Mercury. Geophysical Research Letters, 2016, 43, 7424-7432.	4.0	21
27	Young Martian crater Gratteri and its secondary craters. Journal of Geophysical Research E: Planets, 2016, 121, 1118-1140.	3.6	18
28	The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earthâ€ike worlds. Journal of Geophysical Research E: Planets, 2016, 121, 1927-1961.	3.6	72
29	Sizeâ€frequency distribution of crater populations in equilibrium on the Moon. Journal of Geophysical Research E: Planets, 2015, 120, 2277-2292.	3.6	62
30	Interior structure of the Moon: Constraints from seismic tomography, gravity and topography. Physics of the Earth and Planetary Interiors, 2015, 245, 26-39.	1.9	8
31	Continental crust beneath southeast Iceland. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1818-27.	7.1	102
32	Volcanic Rise. , 2015, , 2273-2276.		0
33	Shield Volcano. , 2015, , 1926-1929.		1
34	Tholus (Mars). , 2015, , 2140-2143.		0
35	Large Shield Volcano. , 2015, , 1125-1132.		0
36	The PLATO 2.0 mission. Experimental Astronomy, 2014, 38, 249-330.	3.7	912

#	Article	IF	CITATIONS
37	Tholus (Mars). , 2014, , 1-4.		Ο
38	The Source Crater of Martian Shergottite Meteorites. Science, 2014, 343, 1343-1346.	12.6	70
39	4D Arctic: A Climpse into the Structure and Evolution of the Arctic in the Light of New Geophysical Maps, Plate Tectonics and Tomographic Models. Surveys in Geophysics, 2014, 35, 1095-1122.	4.6	70
40	Moon, Mars, Mercury: Basin formation ages and implications for the maximum surface age and the migration of gaseous planets. Earth and Planetary Science Letters, 2014, 400, 54-65.	4.4	36
41	Shield Volcano. , 2014, , 1-5.		Ο
42	Volcanic Rise. , 2014, , 1-4.		0
43	Large Shield Volcano. , 2014, , 1-9.		0
44	The African Plate: A history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics, 2013, 604, 4-25.	2.2	164
45	Formation of Martian araneiforms by gasâ€driven erosion of granular material. Geophysical Research Letters, 2012, 39, .	4.0	17
46	Why is the areoid like the residual geoid?. Geophysical Research Letters, 2012, 39, .	4.0	6
47	Chapter 3 Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geological Society Memoir, 2011, 35, 39-48.	1.7	92
48	Chapter 11 Structural interpretation of the Barents and Kara Seas from gravity and magnetic data. Geological Society Memoir, 2011, 35, 197-208.	1.7	4
49	Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus, 2011, 215, 603-607.	2.5	127
50	Do young martian ray craters have ages consistent with the crater count system?. Icarus, 2010, 208, 621-635.	2.5	54
51	Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars. Icarus, 2010, 207, 564-577.	2.5	60
52	On the use of global potential field models for regional interpretation of the West and Central African Rift System. Tectonophysics, 2010, 492, 25-39.	2.2	27
53	Martian Cratering 10. Progress in use of crater counts to interpret geological processes: Examples from two debris aprons. Earth and Planetary Science Letters, 2010, 294, 230-237.	4.4	20
54	The Lunar rayed-crater population — Characteristics of the spatial distribution and ray retention. Earth and Planetary Science Letters, 2010, 295, 147-158.	4.4	41

STEPHANIE C WERNER

#	Article	IF	CITATIONS
55	Downsizing the MjÃ,Inir impact structure, Barents Sea, Norway. Tectonophysics, 2010, 483, 191-202.	2.2	6
56	Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains. Icarus, 2009, 200, 406-417.	2.5	69
57	The global martian volcanic evolutionary history. Icarus, 2009, 201, 44-68.	2.5	243
58	Episodes of floods in Mangala Valles, Mars, from the analysis of HRSC, MOC and THEMIS images. Planetary and Space Science, 2009, 57, 917-943.	1.7	64
59	The early martian evolution—Constraints from basin formation ages. Icarus, 2008, 195, 45-60.	2.5	145
60	Tyrrhena Patera: Geologic history derived from <i>Mars Express</i> High Resolution Stereo Camera. Journal of Geophysical Research, 2008, 113, .	3.3	42
61	Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research, 2007, 112, .	3.3	38
62	Acheron Fossae, Mars: Tectonic rifting, volcanism, and implications for lithospheric thickness. Journal of Geophysical Research, 2007, 112, .	3.3	39
63	Hadriaca Patera: Insights into its volcanic history from Mars Express High Resolution Stereo Camera. Journal of Geophysical Research, 2007, 112, .	3.3	38
64	Geologically recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars. Geophysical Research Letters, 2006, 33, .	4.0	47
65	New Evidence for Impact from the Suvasvesi South Structure, Central East Finland. , 2006, , 287-307.		5
66	Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 2005, 434, 346-351.	27.8	352
67	Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator. Nature, 2005, 434, 352-356.	27.8	201
68	Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature, 2005, 434, 356-361.	27.8	80
69	High heat flux on ancient Mars: Evidence from rift flank uplift at Coracis Fossae. Geophysical Research Letters, 2005, 32, .	4.0	59
70	Fluid lava flows in Gusev crater, Mars. Journal of Geophysical Research, 2005, 110, .	3.3	153
71	Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 2004, 432, 971-979.	27.8	433
72	Continual geological activity in Athabasca Valles, Mars. Journal of Geophysical Research, 2003, 108, .	3.3	33

#	Article	IF	CITATIONS
73	The Near-Earth Asteroid Size–Frequency Distribution: A Snapshot of the Lunar Impactor Size–Frequency Distribution. Icarus, 2002, 156, 287-290.	2.5	66