Ho Seong Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3368130/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Enhancing the Up-conversion luminescence using All dielectric Three-Dimensional multiscale anodized aluminum oxide nanowire structure. Applied Surface Science, 2022, 571, 151278.	6.1	1
2	Prediction of Ln3+ <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:mo <br="" linebreak="goodbreak">linebreakstyle="after">â^`</mml:mo></mml:mrow></mml:math> 4f energy levels in β-NaYF4:Ln3+ and understanding of absorption behaviors. Materials Chemistry and Physics, 2022, 275, 125317.	4.0	4
3	Enhancement of electrochromic response and cyclic durability of WO3 thin films by stacking Nb2O5 layers. Applied Surface Science, 2022, 582, 152431.	6.1	12
4	Enhanced photodetector performance in gold nanoparticle decorated ZnO microrods. Materials Characterization, 2021, 171, 110813.	4.4	8
5	Orthogonal R/G/B Upconversion Luminescence-based Full-Color Tunable Upconversion Nanophosphors for Transparent Displays. Nano Letters, 2021, 21, 4838-4844.	9.1	73
6	Sputter-grown Eu-doped WO3-Eu2(WO4)3 composite red phosphor thin films. Optical Materials, 2021, 122, 111721.	3.6	4
7	Phosphine-Free-Synthesized ZnSe/ZnS Core/Shell Quantum Dots for White Light-Emitting Diodes. Applied Sciences (Switzerland), 2021, 11, 10060.	2.5	3
8	Superâ€boosted Hybrid Plasmonic Upconversion Process for Photodetection at 1550Ânm Wavelength. Advanced Materials, 2021, , 2106225.	21.0	5
9	Au-incorporated NiO nanocomposite thin films as electrochromic electrodes for supercapacitors. Electrochimica Acta, 2020, 330, 135203.	5.2	51
10	800Ânm near-infrared light-excitable intense green-emitting Li(Gd,Y)F4:Yb,Er-based core/shell/shell upconversion nanophosphors for efficient liver cancer cell imaging. Materials and Design, 2020, 195, 108941.	7.0	19
11	Sub-20 nm LiErF ₄ -Based Upconversion Nanophosphors for Simultaneous Imaging and Photothermal Therapeutics. ACS Applied Nano Materials, 2020, 3, 8662-8671.	5.0	16
12	Bright Blue, Green, and Red Luminescence from Dye-Sensitized Core@Shell Upconversion Nanophosphors under 800 nm Near-Infrared Light. Materials, 2020, 13, 5338.	2.9	5
13	Magnetic property modulation of Ni thin films transferred onto flexible substrates. Journal of Magnetism and Magnetic Materials, 2020, 511, 166968.	2.3	5
14	A Multiâ€Functional Highly Efficient Upconversion Luminescent Film with an Array of Dielectric Microbeads Decorated with Metal Nanoparticles. Advanced Functional Materials, 2020, 30, 1909445.	14.9	21
15	Luminescent silica films prepared using perhydropolysilazane and Mn-doped ZnS nanophosphors. Applied Surface Science, 2020, 511, 145441.	6.1	11
16	Facile synthesis of ZnO microrod photodetectors by solid-state reaction. Journal of Alloys and Compounds, 2020, 825, 154110.	5.5	8
17	Simultaneous enhancement of luminescence and stability of CsPbBr3 perovskite nanocrystals via formation of perhydropolysilazane-derived nanopatterned film. Chemical Engineering Journal, 2020, 393, 124767.	12.7	15
18	Intense upconversion red emission from Gd-doped NaErF ₄ :Tm-based core/shell/shell nanocrystals under 980 and 800 nm near infrared light excitations. Chemical Communications, 2019, 55, 2261-2264.	4.1	24

#	Article	IF	CITATIONS
19	Luminescent and magnetic properties of cerium-doped yttrium aluminum garnet and yttrium iron garnet composites. Ceramics International, 2019, 45, 9846-9851.	4.8	19
20	Full visible light emission in Eu ²⁺ ,Mn ²⁺ -doped Ca ₉ LiY _{0.667} (PO ₄) ₇ phosphors based on multiple crystal lattice substitution and energy transfer for warm white LEDs with high colour-rendering. Journal of Materials Chemistry C, 2019, 7, 3644-3655.	5.5	92
21	Facile synthesis of sub-10 nm-sized bright red-emitting upconversion nanophosphors <i>via</i> tetrahedral YOF:Yb,Er seed-mediated growth. Chemical Communications, 2019, 55, 13350-13353.	4.1	11
22	Highly Secure Plasmonic Encryption Keys Combined with Upconversion Luminescence Nanocrystals. Advanced Functional Materials, 2018, 28, 1800369.	14.9	28
23	Multi-color luminescence evolution of SrGdAlO4:Ln3+ (Ln3+Â= Eu3+ and/or Tb3+) nanocrystalline phosphors via a sol-gel process. Journal of Alloys and Compounds, 2018, 753, 781-790.	5.5	27
24	Highly Efficient Blue Emission and Superior Thermal Stability of BaAl ₁₂ O ₁₉ :Eu ²⁺ Phosphors Based on Highly Symmetric Crystal Structure. Chemistry of Materials, 2018, 30, 2389-2399.	6.7	302
25	Strong upconversion–downshifting green emission from Tb3+ ions in core/shell/shell-structured nanophosphors. Research on Chemical Intermediates, 2018, 44, 4641-4650.	2.7	3
26	Highly Luminescent Lead Halide Perovskite Quantum Dots in Hierarchical CaF ₂ Matrices with Enhanced Stability as Phosphors for White Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1701343.	7.3	107
27	Intense Red-Emitting Upconversion Nanophosphors (800 nm-Driven) with a Core/Double-Shell Structure for Dual-Modal Upconversion Luminescence and Magnetic Resonance in Vivo Imaging Applications. ACS Applied Materials & Interfaces, 2018, 10, 12331-12340.	8.0	46
28	Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dyes and Pigments, 2018, 149, 246-252.	3.7	85
29	Facile method for the synthesis of gold nanoparticles using an ion coater. Applied Surface Science, 2018, 434, 1001-1006.	6.1	18
30	Multicolor Tunable Upconversion Luminescence from Sensitized Seed-Mediated Grown LiGdF ₄ :Yb,Tm-Based Core/Triple-Shell Nanophosphors for Transparent Displays. Chemistry of Materials, 2018, 30, 8457-8464.	6.7	66
31	Multi-color luminescence evolution of La2Zr3(MoO4)9:Ln3+ (Ln3+ = Dy3+ and/or Eu3+) nanocrystalline phosphors for UV-pumped white light-emitting devices. Journal of Luminescence, 2018, 203, 179-188.	3.1	6
32	Facile synthesis of multicolor tunable ultrasmall LiYF 4 :Yb,Tm,Er/LiGdF 4 core/shell upconversion nanophosphors withÂsub-10Ânm size. Dyes and Pigments, 2017, 139, 831-838.	3.7	35
33	Solution-Processed CuInS ₂ -Based White QD-LEDs with Mixed Active Layer Architecture. ACS Applied Materials & Interfaces, 2017, 9, 11224-11230.	8.0	37
34	Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides. Scientific Reports, 2017, 7, 45659.	3.3	25
35	Synthesis of highly efficient azure-to-blue-emitting Zn–Cu–Ga–S quantum dots. Chemical Communications, 2017, 53, 4088-4091.	4.1	30
36	Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction. Electronic Materials Letters, 2017, 13, 57-65.	2.2	33

#	Article	IF	CITATIONS
37	CulnS ₂ â€Based Quantum Dot Lightâ€Emitting Electrochemical Cells (QLECs). Advanced Materials Technologies, 2017, 2, 1700154.	5.8	26
38	Controlled Synthesis of CuInS ₂ /ZnS Nanocubes and Their Sensitive Photoluminescence Response toward Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2017, 9, 32097-32105.	8.0	13
39	Highly Bright and Photostable Li(Gd,Y)F ₄ :Yb,Er/LiGdF ₄ Core/Shell Upconversion Nanophosphors for Bioimaging Applications. Particle and Particle Systems Characterization, 2017, 34, 1600183.	2.3	18
40	Enhanced Optical Properties of Bredigiteâ€Structure Ca _{13.7} Eu _{0.3} Mg ₂ [SiO ₄] ₈ Phosphor: Effective Eu Reduction by La Coâ€Doping. Journal of the American Ceramic Society, 2016, 99, 557-563.	3.8	2
41	Plasmonic Nanowireâ€Enhanced Upconversion Luminescence for Anticounterfeit Devices. Advanced Functional Materials, 2016, 26, 7836-7846.	14.9	70
42	A Plasmonic Platform with Disordered Array of Metal Nanoparticles for Threeâ€Order Enhanced Upconversion Luminescence and Highly Sensitive Nearâ€Infrared Photodetector. Advanced Materials, 2016, 28, 7899-7909.	21.0	61
43	Determination of Core/Double-Shell Architecture of a Single Tetragonal Bipyramidal Nanophosphor for Intense Dual-Mode Luminescence. Microscopy and Microanalysis, 2016, 22, 1428-1429.	0.4	0
44	Upconversion luminescence enhancement in plasmonic architecture with random assembly of metal nanodomes. Nanoscale, 2016, 8, 2071-2080.	5.6	36
45	Direct observation of the core/double-shell architecture of intense dual-mode luminescent tetragonal bipyramidal nanophosphors. Nanoscale, 2016, 8, 10049-10058.	5.6	29
46	Structural and luminescent properties of red-emitting SrGe 4 O 9 :Mn 4+ phosphors for white light-emitting diodes with high color rendering index. Journal of Luminescence, 2016, 172, 99-104.	3.1	23
47	Enhanced fluorescent stability of copper indium sulfide quantum dots through incorporating aluminum into ZnS shell. Journal of Alloys and Compounds, 2016, 662, 173-178.	5.5	17
48	Core/shell-structured upconversion nanophosphor and cadmium-free quantum-dot bilayer-based near-infrared photodetectors. Optics Letters, 2015, 40, 4959.	3.3	16
49	A Strategy to enhance Eu3+ emission from LiYF4:Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites. Scientific Reports, 2015, 5, 7866.	3.3	40
50	Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots. Nanoscale, 2015, 7, 5363-5370.	5.6	41
51	Up-conversion routines of Er3+–Yb3+ doped Y6O5F8 and YOF phosphors. Materials Research Bulletin, 2015, 71, 25-29.	5.2	9
52	Quantum dot-layer-encapsulated and phenyl-functionalized silica spheres for highly luminous, colour rendering, and stable white light-emitting diodes. Nanoscale, 2015, 7, 12860-12867.	5.6	26
53	Electrostatic Stabilized InP Colloidal Quantum Dots with High Photoluminescence Efficiency. Langmuir, 2015, 31, 7117-7121.	3.5	11
54	Photostability enhancement of InP/ZnS quantum dots enabled by In2O3 overcoating. Journal of Alloys and Compounds, 2015, 647, 6-13.	5.5	27

#	Article	IF	CITATIONS
55	Simultaneous Enhancement of Upconversion and Downshifting Luminescence via Plasmonic Structure. Nano Letters, 2015, 15, 2491-2497.	9.1	64
56	Highly Bright Yellow-Green-Emitting CuInS ₂ Colloidal Quantum Dots with Core/Shell/Shell Architecture for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 6764-6771.	8.0	108
57	Quantum-dot-based white lighting planar source through downconversion by blue electroluminescence. Optics Letters, 2014, 39, 1208.	3.3	6
58	Remote-type, high-color gamut white light-emitting diode based on InP quantum dot color converters. Optical Materials Express, 2014, 4, 1297.	3.0	58
59	A systematic in-vivo toxicity evaluation of nanophosphor particles via zebrafish models. Biomaterials, 2014, 35, 440-449.	11.4	61
60	Synthesis of Multifunctional Silica Composites Encapsulating a Mixture Layer of Quantum Dots and Magnetic Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 78-86.	3.7	3
61	Facile synthesis of intense green light emitting LiGdF ₄ :Yb,Er-based upconversion bipyramidal nanocrystals and their polymer composites. Nanoscale, 2014, 6, 7461-7468.	5.6	53
62	Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F4:Ce,Tb,Eu/β-NaYF4 core/shell nanocrystals. Nanoscale, 2013, 5, 9255.	5.6	64
63	Unique oxide overcoating of CulnS2/ZnS core/shell quantum dots with ZnGa2O4 for fabrication of white light-emitting diode with improved operational stability. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	19
64	Utilization of LiSrPO4:Eu phosphor and Cuî—,Inî—,S quantum dot for fabrication of high color rendering white light-emitting diode. Materials Letters, 2013, 92, 325-329.	2.6	13
65	Rational morphology control of β-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping. Nanoscale, 2013, 5, 4242.	5.6	109
66	pH-Responsive Biodegradable Assemblies Containing Tunable Phenyl-Substituted Vinyl Ethers for Use as Efficient Gene Delivery Vehicles. ACS Applied Materials & Interfaces, 2013, 5, 5648-5658.	8.0	28
67	Yellow-emitting Î ³ -Ca_2SiO_4:Ce^3+, Li^+ phosphor for solid-state lighting: luminescent properties, electronic structure, and white light-emitting diode application. Optics Express, 2012, 20, 2761.	3.4	76
68	Bright dual-mode green emission from selective set of dopant ions in β-Na(Y,Gd)F ₄ :Yb,Er/β-NaGdF ₄ :Ce,Tb core/shell nanocrystals. Optics Express, 2012, 20, 17107.	3.4	51
69	Biotemplated Silica and Titania Nanowires: Synthesis, Characterization and Potential Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 227-235.	0.9	8
70	Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth. Nanotechnology, 2012, 23, 485609.	2.6	39
71	White-light emitting surface-functionalized ZnSe quantum dots: europium complex-capped hybrid nanocrystal. Journal of Materials Chemistry, 2011, 21, 12812.	6.7	58
72	In Situ Synthesis of Thiol-Capped CuInS2-ZnS Quantum Dots Embedded in Silica Powder by Sequential Ligand-Exchange and Silanization. Electrochemical and Solid-State Letters, 2011, 15, K16-K18.	2.2	40

#	Article	IF	CITATIONS
73	Widely Tunable Emissions of Colloidal ZnxCd1â^'xSe Alloy Quantum Dots Using a Constant Zn/Cd Precursor Ratio. Journal of Nanoscience and Nanotechnology, 2011, 11, 725-729.	0.9	9
74	Luminescence Tuning Mechanism of La0.827Al11.9O19.09:Eu2+,Mn2+ Phosphor for Multi-Color Light-Emitting Diodes. Journal of the Electrochemical Society, 2011, 158, J276.	2.9	19
75	Multifunctional calcium carbonate microparticles: Synthesis and biological applications. Journal of Materials Chemistry, 2010, 20, 7728.	6.7	50
76	Construction of Cuprous Oxide Electrodes Composed of 2D Single rystalline Dendritic Nanosheets. Small, 2010, 6, 2183-2190.	10.0	19
77	Electrochemical synthesis of inorganic polycrystalline electrodes with controlled architectures. MRS Bulletin, 2010, 35, 753-760.	3.5	27
78	Biomagnetic Glasses: Preparation, Characterization, and Biosensor Applications. Langmuir, 2010, 26, 4320-4326.	3.5	46
79	Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor. Journal of Materials Chemistry, 2010, 20, 5030.	6.7	56
80	White ACPEL Device with ZnS:Cu,Cl, Tb ₃ Al ₅ O <sub& and CaS:Eu²⁺ Phosphors Using a Layered Structure. ETRI Journal 2009 31 803-805</sub& 	kamp;gt;12	213
81	Emission Band Change of (Sr[sub 1â^'x]M[sub x])[sub 3]SiO[sub 5]:Eu[sup 2+] (M=Ca,â€,Ba) Phosphor for White Light Sources Using Blue/Near-Ultraviolet LEDs. Journal of the Electrochemical Society, 2009, 156, J138.	2.9	67
82	Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors. Applied Physics B: Lasers and Optics, 2009, 95, 715-720.	2.2	279
83	Bright three-band white light generated from CdSe/ZnSe quantum dot-assisted Sr3SiO5:Ce3+,Li+-based white light-emitting diode with high color rendering index. Applied Physics Letters, 2009, 95, .	3.3	45
84	Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property. Optics Letters, 2009, 34, 1.	3.3	128
85	Luminescence Properties and Energy Transfer of Site-Sensitive Ca _{6â^'<i>x</i>â'`<i>y</i>} Mg _{<i>x</i>â'`<i>z</i>} (PO ₄) ₄ :Eu< Phosphors and Their Application to Near-UV LED-Based White LEDs. Inorganic Chemistry, 2009, 48, 11525-11523	sub> <i>y<!--<br-->4.0</i>	i> <suj 187</suj
86	White Lightâ€Emitting Diodes with Excellent Color Rendering Based on Organically Capped CdSe Quantum Dots and Sr ₃ SiO ₅ :Ce ³⁺ ,Li ⁺ Phosphors. Advanced Materials, 2008, 20, 2696-2702.	21.0	391
87	Origin of the discrepancy between photoluminescence brightness of TAG:Ce and electroluminescence brightness of TAG:Ce-based white LED expected from phosphor brightness. Optics Letters, 2008, 33, 2140.	3.3	20
88	Red-Emitting LiLa[sub 2]O[sub 2]BO[sub 3]:Sm[sup 3+],Eu[sup 3+] Phosphor for Near-Ultraviolet Light-Emitting Diodes-Based Solid-State Lighting. Journal of the Electrochemical Society, 2008, 155, J226.	2.9	41
89	Particle size control of a monodisperse spherical Y2O3:Eu3+ phosphor and its photoluminescence properties. Journal of Materials Research, 2007, 22, 2017-2024.	2.6	51
90	Mechanism for strong yellow emission of Y3Al5O12:Ce3+ phosphor under electron irradiation for the application to field emission backlight units. Applied Physics Letters, 2007, 90, 071908.	3.3	24

#	Article	IF	CITATIONS
91	Yellow-emitting Sr3SiO5:Ce3+,Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes. Applied Physics Letters, 2007, 90, 041906.	3.3	207
92	White light emission from blue and near ultraviolet light-emitting diodes precoated with a Sr_3SiO_5:Ce^3+,Li^+ phosphor. Optics Letters, 2007, 32, 3444.	3.3	70
93	Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. Journal of Luminescence, 2007, 126, 371-377.	3.1	499
94	Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+,Mn2+ phosphor for application to warm white-light-emitting diodes. Applied Physics Letters, 2006, 89, 231909.	3.3	117