
Florence Vignols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3368087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Flexible and Original Architecture of Two Unrelated Zinc Fingers Underlies the Role of the Multitask P1 in RYMV Spread. Journal of Molecular Biology, 2022, 434, 167715.	4.2	6
2	The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health. Trends in Plant Science, 2021, 26, 248-259.	8.8	80
3	The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita. Physiological and Molecular Plant Pathology, 2021, 114, 101630.	2.5	8
4	Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M. javanica. Experimental Parasitology, 2021, 229, 108153.	1.2	7
5	Protein lipoylation in mitochondria requires Fe-S cluster assembly factors NFU4 and NFU5. Plant Physiology, 2021, , .	4.8	7
6	The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins. Journal of Biological Chemistry, 2020, 295, 1727-1742.	3.4	20
7	The Transcription Factor bHLH121 Interacts with bHLH105 (ILR3) and Its Closest Homologs to Regulate Iron Homeostasis in Arabidopsis. Plant Cell, 2020, 32, 508-524.	6.6	111
8	The Arabidopsis Mitochondrial Glutaredoxin GRXS15 Provides [2Fe-2S] Clusters for ISCA-Mediated [4Fe-4S] Cluster Maturation. International Journal of Molecular Sciences, 2020, 21, 9237.	4.1	12
9	A Global Proteomic Approach Sheds New Light on Potential Iron-Sulfur Client Proteins of the Chloroplastic Maturation Factor NFU3. International Journal of Molecular Sciences, 2020, 21, 8121.	4.1	5
10	Identification of client iron–sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. Journal of Experimental Botany, 2020, 71, 4171-4187.	4.8	25
11	[4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins. Journal of Biological Chemistry, 2020, 295, 18367-18378.	3.4	11
12	Is There a Role for Glutaredoxins and BOLAs in the Perception of the Cellular Iron Status in Plants?. Frontiers in Plant Science, 2019, 10, 712.	3.6	19
13	Temperature Stress and Redox Homeostasis: The Synergistic Network of Redox and Chaperone System in Response to Stress in Plants. Heat Shock Proteins, 2019, , 53-90.	0.2	1
14	NMR chemical shift backbone assignment of the viral protein P1 encoded by the African Rice Yellow Mottle Virus. Biomolecular NMR Assignments, 2019, 13, 345-348.	0.8	0
15	Iron–sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. Journal of Experimental Botany, 2019, 70, 1875-1889.	4.8	25
16	Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytologist, 2019, 223, 1433-1446.	7.3	92
17	Self-protection of cytosolic malate dehydrogenase against oxidative stress in Arabidopsis. Journal of Experimental Botany, 2018, 69, 3491-3505.	4.8	48
18	Identification of <scp>CROWN ROOTLESS</scp> 1â€regulated genes in rice reveals specific and conserved elements of postembryonic root formation. New Phytologist, 2015, 206, 243-254.	7.3	43

FLORENCE VIGNOLS

#	Article	IF	CITATIONS
19	Monothiol Glutaredoxin–BolA Interactions: Redox Control of Arabidopsis thaliana BolA2 and SufE1. Molecular Plant, 2014, 7, 187-205.	8.3	70
20	The RYMV-Encoded Viral Suppressor of RNA Silencing P1 Is a Zinc-Binding Protein with Redox-Dependent Flexibility. Journal of Molecular Biology, 2013, 425, 2423-2435.	4.2	23
21	<i>Arabidopsis thaliana</i> Nfu2 Accommodates [2Fe-2S] or [4Fe-4S] Clusters and Is Competent for <i>in Vitro</i> Maturation of Chloroplast [2Fe-2S] and [4Fe-4S] Cluster-Containing Proteins. Biochemistry, 2013, 52, 6633-6645.	2.5	77
22	Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains. Frontiers in Plant Science, 2013, 4, 389.	3.6	58
23	Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. Journal of Experimental Botany, 2013, 64, 3843-3854.	4.8	76
24	Historical Contingencies Modulate the Adaptability of Rice Yellow Mottle Virus. PLoS Pathogens, 2012, 8, e1002482.	4.7	41
25	Glutathione―and glutaredoxinâ€dependent reduction of methionine sulfoxide reductase A. FEBS Letters, 2012, 586, 3894-3899.	2.8	24
26	Heat shockâ€induced biphasic Ca ²⁺ signature and OsCaM1â€1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (<i>Oryza sativa</i> L.). Plant, Cell and Environment, 2012, 35, 1543-1557.	5.7	86
27	AtNUFIP, an essential protein for plant development, reveals the impact of snoRNA gene organisation on the assembly of snoRNPs and rRNA methylation in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 65, 807-819.	5.7	25
28	The rice yellow mottle virus P1 protein exhibits dual functions to suppress and activate gene silencing. Plant Journal, 2010, 61, 371-382.	5.7	58
29	Direct Interaction Between the <i>Rice yellow mottle virus</i> (RYMV) VPg and the Central Domain of the Rice eIF(iso)4G1 Factor Correlates with Rice Susceptibility and RYMV Virulence. Molecular Plant-Microbe Interactions, 2010, 23, 1506-1513.	2.6	60
30	Thioredoxins and glutaredoxins in development. Plant Science, 2010, 178, 420-423.	3.6	16
31	Thioredoxins and Glutaredoxins: Unifying Elements in Redox Biology. Annual Review of Genetics, 2009, 43, 335-367.	7.6	413
32	AtCXXS: atypical members of the Arabidopsis thaliana thioredoxin h family with a remarkably high disulfide isomerase activity. Physiologia Plantarum, 2008, 133, 611-622.	5.2	30
33	Glutaredoxins and thioredoxins in plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 589-600.	4.1	165
34	Characterization of a ribonuclease III-like protein required for cleavage of the pre-rRNA in the 3′ETS in Arabidopsis. Nucleic Acids Research, 2008, 36, 1163-1175.	14.5	73
35	Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues. Journal of Experimental Botany, 2008, 59, 1267-1277.	4.8	30
36	Thioredoxin and Redox Control within the New Concept of Oxidative Signaling. Plant Signaling and Behavior, 2007, 2, 426-427.	2.4	7

FLORENCE VIGNOLS

#	Article	IF	CITATIONS
37	PsTRXh1 and PsTRXh2 Are Both Pea h-Type Thioredoxins with Antagonistic Behavior in Redox Imbalances. Plant Physiology, 2007, 143, 300-311.	4.8	35
38	Evolution of redoxin genes in the green lineage. Photosynthesis Research, 2006, 89, 179-192.	2.9	48
39	Thioredoxins inArabidopsis and other plants. Photosynthesis Research, 2005, 86, 419-433.	2.9	196
40	A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16729-16734.	7.1	70
41	Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Gene, 2003, 309, 23-33.	2.2	32
42	Redox Control of Hsp70-Co-chaperone Interaction Revealed by Expression of a Thioredoxin-like Arabidopsis Protein. Journal of Biological Chemistry, 2003, 278, 4516-4523.	3.4	54
43	Classification of Plant Thioredoxins by Sequence Similarity and Intron Position. Methods in Enzymology, 2002, 347, 394-402.	1.0	120
44	Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Molecular Biology, 2002, 49, 679-695.	3.9	51
45	In Vivo Characterization of a Thioredoxin h Target Protein Defines a New Peroxiredoxin Family. Journal of Biological Chemistry, 1999, 274, 19714-19722.	3.4	213
46	Involvement of a maize proline-rich protein in secondary cell wall formation as deduced from its specific mRNA localization. Plant Molecular Biology, 1999, 39, 945-952.	3.9	31
47	Plant thioredoxins and glutaredoxins: identity and putative roles. Trends in Plant Science, 1999, 4, 388-394.	8.8	75
48	Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. Gene, 1997, 195, 177-186.	2.2	66
49	The maize caffeic acid O-methyltransferase gene promoter is active in transgenic tobacco and maize plant tissues. Plant Molecular Biology, 1996, 31, 307-322.	3.9	46
50	The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase Plant Cell, 1995, 7, 407-416.	6.6	331
51	Characterization of a rice gene coding for a lipid transfer protein. Gene, 1994, 142, 265-270.	2.2	54
52	Multiple mRNA coding for phospholipid-transfer protein from Zea mays arise from alternative splicing. Gene, 1991, 99, 133-136.	2.2	31
53	Spatial and temporal expression of a maize lipid transfer protein gene Plant Cell, 1991, 3, 923-933.	6.6	140