Cynthia Shannon Weickert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3367880/publications.pdf Version: 2024-02-01

		23567	30922
190	12,731	58	102
papers	citations	h-index	g-index
192	192	192	16352
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	21.4	1,191
2	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	21.4	629
3	Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biological Psychiatry, 2018, 84, 644-654.	1.3	627
4	Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6747-6752.	7.1	380
5	Human Dysbindin (DTNBP1) Gene Expression inNormal Brain and in Schizophrenic Prefrontal Cortex and Midbrain. Archives of General Psychiatry, 2004, 61, 544.	12.3	331
6	Expression of Interneuron Markers in the Dorsolateral Prefrontal Cortex of the Developing Human and in Schizophrenia. American Journal of Psychiatry, 2010, 167, 1479-1488.	7.2	313
7	Decreased BDNF, trkB-TK+ and GAD ₆₇ mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. Journal of Psychiatry and Neuroscience, 2011, 36, 195-203.	2.4	296
8	Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Human Molecular Genetics, 2007, 16, 129-141.	2.9	283
9	Critical Factors in Gene Expression in Postmortem Human Brain: Focus on Studies in Schizophrenia. Biological Psychiatry, 2006, 60, 650-658.	1.3	259
10	Role of ATPâ€binding cassette transporters in brain lipid transport and neurological disease. Journal of Neurochemistry, 2008, 104, 1145-1166.	3.9	201
11	Effects of Chronic Haloperidol and Clozapine Treatment on Neurogenesis in the Adult Rat Hippocampus. Neuropsychopharmacology, 2004, 29, 1063-1069.	5.4	170
12	Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophrenia Research, 2008, 100, 270-280.	2.0	170
13	Accelerated Gray and White Matter Deterioration With Age in Schizophrenia. American Journal of Psychiatry, 2017, 174, 286-295.	7.2	168
14	Decreased glutamic acid decarboxylase67 mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. Journal of Psychiatric Research, 2009, 43, 970-977.	3.1	166
15	Rethinking schizophrenia in the context of normal neurodevelopment. Frontiers in Cellular Neuroscience, 2013, 7, 60.	3.7	157
16	Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Molecular Psychiatry, 2020, 25, 2860-2872.	7.9	155
17	Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Human Molecular Genetics, 2006, 15, 1245-1258.	2.9	154
18	Prefrontal GABAA receptor α-subunit expression in normal postnatal human development and schizophrenia. Journal of Psychiatric Research, 2010, 44, 673-681.	3.1	153

#	Article	IF	CITATIONS
19	Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 2014, 231, 1581-1599.	3.1	153
20	International randomized-controlled trial of transcranial Direct Current Stimulation in depression. Brain Stimulation, 2018, 11, 125-133.	1.6	151
21	Neuroplasticity in Depressed Individuals Compared with Healthy Controls. Neuropsychopharmacology, 2013, 38, 2101-2108.	5.4	149
22	Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biological Psychiatry, 2004, 56, 844-852.	1.3	148
23	BDNF mRNA expression during postnatal development, maturation and aging of the human prefrontal cortex. Developmental Brain Research, 2002, 139, 139-150.	1.7	147
24	Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Human Molecular Genetics, 2008, 17, 2293-2309.	2.9	139
25	Catechol O-Methyltransferase (COMT) mRNA Expression in the Dorsolateral Prefrontal Cortex of Patients with Schizophrenia. Neuropsychopharmacology, 2003, 28, 1521-1530.	5.4	126
26	Using blood cytokine measures to define high inflammatory biotype of schizophrenia and schizoaffective disorder. Journal of Neuroinflammation, 2017, 14, 188.	7.2	125
27	Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophrenia Research, 2008, 98, 105-110.	2.0	123
28	Age-related differences in glucocorticoid receptor mRNA levels in the human brain. Neurobiology of Aging, 2007, 28, 447-458.	3.1	121
29	Increased expression of astrocyte markers in schizophrenia: Association with neuroinflammation. Australian and New Zealand Journal of Psychiatry, 2014, 48, 722-734.	2.3	120
30	Expression of NMDA receptor NR1, NR2A and NR2B subunit mRNAs during development of the human hippocampal formation. European Journal of Neuroscience, 2003, 18, 1197-1205.	2.6	114
31	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	1.3	114
32	Emotional face processing in schizophrenia. Current Opinion in Psychiatry, 2009, 22, 140-146.	6.3	111
33	Selection of Reference Gene Expression in a Schizophrenia Brain Cohort. Australian and New Zealand Journal of Psychiatry, 2010, 44, 59-70.	2.3	107
34	Gene expression in dopamine and GABA systems in an animal model of schizophrenia: effects of antipsychotic drugs. European Journal of Neuroscience, 2003, 18, 391-402.	2.6	101
35	Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. Journal of Neurochemistry, 2010, 113, 952-964.	3.9	101
36	Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell, 2017, 16, 1195-1199.	6.7	100

#	Article	IF	CITATIONS
37	Increased Interstitial White Matter Neuron Density in the Dorsolateral Prefrontal Cortex of People with Schizophrenia. Biological Psychiatry, 2011, 69, 63-70.	1.3	99
38	Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Medical Genomics, 2009, 2, 28.	1.5	97
39	Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra. BMC Neuroscience, 2012, 13, 95.	1.9	94
40	Decreased Brain pH as a Shared Endophenotype of Psychiatric Disorders. Neuropsychopharmacology, 2018, 43, 459-468.	5.4	94
41	Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring. Brain, Behavior, and Immunity, 2017, 63, 8-20.	4.1	91
42	Gene Expression of Metabolic Enzymes and a Protease Inhibitor in the Prefrontal Cortex Are Decreased in Schizophrenia. Neurochemical Research, 2004, 29, 1245-1255.	3.3	85
43	Schizophrenia and bipolar disorder show both common and distinct changes in cortical interneuron markers. Schizophrenia Research, 2014, 155, 26-30.	2.0	85
44	White Matter Disruptions in Schizophrenia Are Spatially Widespread and Topologically Converge on Brain Network Hubs. Schizophrenia Bulletin, 2017, 43, sbw100.	4.3	85
45	Cognitive Subtypes of Schizophrenia Characterized by Differential Brain Volumetric Reductions and Cognitive Decline. JAMA Psychiatry, 2016, 73, 1251.	11.0	84
46	Cell proliferation is reduced in the hippocampus in schizophrenia. Australian and New Zealand Journal of Psychiatry, 2016, 50, 473-480.	2.3	84
47	Alteration in Estrogen Receptor α mRNA Levels in Frontal Cortex and Hippocampus of Patients with Major Mental Illness. Biological Psychiatry, 2005, 58, 812-824.	1.3	83
48	Testosterone Induces Molecular Changes in Dopamine Signaling Pathway Molecules in the Adolescent Male Rat Nigrostriatal Pathway. PLoS ONE, 2014, 9, e91151.	2.5	80
49	Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neuroscience, 2012, 13, 87.	1.9	78
50	Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Molecular Psychiatry, 2021, 26, 849-863.	7.9	77
51	Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Scientific Reports, 2013, 3, 3539.	3.3	76
52	Delayed onset of enhanced MK-801-induced motor hyperactivity after neonatal lesions of the rat ventral hippocampus. Biological Psychiatry, 2001, 49, 528-539.	1.3	71
53	Higher Gamma-Aminobutyric Acid Neuron Density in the White Matter of Orbital Frontal Cortex in Schizophrenia. Biological Psychiatry, 2012, 72, 725-733.	1.3	70
54	Neuregulin-1 and schizophrenia in the genome-wide association study era. Neuroscience and Biobehavioral Reviews, 2016, 68, 387-409.	6.1	68

#	Article	IF	CITATIONS
55	Striatal TGF-α: postnatal developmental expression and evidence for a role in the proliferation of subependymal cells. Developmental Brain Research, 1995, 86, 203-216.	1.7	67
56	Spatial and temporal diversity of glycome expression in mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28743-28753.	7.1	67
57	Serotonin Receptor Expression in Human Prefrontal Cortex: Balancing Excitation and Inhibition across Postnatal Development. PLoS ONE, 2011, 6, e22799.	2.5	62
58	Widespread expression of ErbB2, ErbB3 and ErbB4 in non-human primate brain. Brain Research, 2007, 1139, 95-109.	2.2	61
59	Identification of Sialyltransferase 8B as a Generalized Susceptibility Gene for Psychotic and Mood Disorders on Chromosome 15q25-26. PLoS ONE, 2012, 7, e38172.	2.5	60
60	The impact of premorbid and current intellect in schizophrenia: cognitive, symptom, and functional outcomes. NPJ Schizophrenia, 2015, 1, 15043.	3.6	60
61	Glucocorticoid Receptor 1B and 1C mRNA Transcript Alterations in Schizophrenia and Bipolar Disorder, and Their Possible Regulation by GR Gene Variants. PLoS ONE, 2012, 7, e31720.	2.5	60
62	Synaptophysin and GAP-43 mRNA levels in the hippocampus of subjects with schizophrenia. Schizophrenia Research, 2001, 49, 89-98.	2.0	59
63	Increased Macrophages and C1qA, C3, C4 Transcripts in the Midbrain of People With Schizophrenia. Frontiers in Immunology, 2020, 11, 2002.	4.8	56
64	Increases in Two Truncated TrkB Isoforms in the Prefrontal Cortex of People With Schizophrenia. Schizophrenia Bulletin, 2013, 39, 130-140.	4.3	55
65	Increase in PAS-induced neuroplasticity after a treatment courseof transcranial direct current stimulation for depression. Journal of Affective Disorders, 2014, 167, 140-147.	4.1	55
66	Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology, 2019, 44, 1043-1054.	5.4	55
67	Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Translational Psychiatry, 2021, 11, 528.	4.8	54
68	Elevated ErbB4 mRNA is related to interneuron deficit in prefrontal cortex in schizophrenia. Journal of Psychiatric Research, 2014, 53, 125-132.	3.1	53
69	Investigation of peripheral complement factors across stages of psychosis. Schizophrenia Research, 2019, 204, 30-37.	2.0	50
70	Lack of Change in Markers of Presynaptic Terminal Abundance Alongside Subtle Reductions in Markers of Presynaptic Terminal Plasticity in Prefrontal Cortex of Schizophrenia Patients. Biological Psychiatry, 2011, 69, 71-79.	1.3	48
71	Alterations of mGluR5 and its endogenous regulators Norbin, Tamalin and Preso1 in schizophrenia: towards a model of mGluR5 dysregulation. Acta Neuropathologica, 2015, 130, 119-129.	7.7	48
72	Abnormal Glucocorticoid Receptor mRNA and Protein Isoform Expression in the Prefrontal Cortex in Psychiatric Illness. Neuropsychopharmacology, 2011, 36, 2698-2709.	5.4	47

#	Article	IF	CITATIONS
73	Glucocorticoid receptor mRNA and protein isoform alterations in the orbitofrontal cortex in schizophrenia and bipolar disorder. BMC Psychiatry, 2012, 12, 84.	2.6	47
74	Large-Scale Evidence for an Association Between Peripheral Inflammation and White Matter Free Water in Schizophrenia and Healthy Individuals. Schizophrenia Bulletin, 2021, 47, 542-551.	4.3	47
75	Reduced neural activity of the prefrontal cognitive control circuitry during response inhibition to negative words in people with schizophrenia. Journal of Psychiatry and Neuroscience, 2012, 37, 379-388.	2.4	46
76	Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia. NPJ Schizophrenia, 2015, 1, 15037.	3.6	46
77	GDNF mRNA expression in normal postnatal development, aging, and in weaver mutant mice. Neurobiology of Aging, 1995, 16, 925-929.	3.1	45
78	Glutamate Carboxypeptidase II Gene Expression in the Human Frontal and Temporal Lobe in Schizophrenia. Neuropsychopharmacology, 2004, 29, 117-125.	5.4	45
79	Long Non-Coding RNA Expression during Aging in the Human Subependymal Zone. Frontiers in Neurology, 2015, 6, 45.	2.4	44
80	Molecular evidence that cortical synaptic growth predominates during the first decade of life in humans. International Journal of Developmental Neuroscience, 2011, 29, 225-236.	1.6	42
81	Expression of NPAS3 in the Human Cortex and Evidence of Its Posttranscriptional Regulation by miR-17 During Development, With Implications for Schizophrenia. Schizophrenia Bulletin, 2013, 39, 396-406.	4.3	41
82	Nestin-Positive Ependymal Cells Are Increased in the Human Spinal Cord after Traumatic Central Nervous System Injury. Journal of Neurotrauma, 2015, 32, 1393-1402.	3.4	41
83	Decline in Proliferation and Immature Neuron Markers in the Human Subependymal Zone during Aging: Relationship to EGF- and FGF-Related Transcripts. Frontiers in Aging Neuroscience, 2016, 8, 274.	3.4	41
84	ABCA8 stimulates sphingomyelin production in oligodendrocytes. Biochemical Journal, 2013, 452, 401-410.	3.7	40
85	Increased peripheral inflammation in schizophrenia is associated with worse cognitive performance and related cortical thickness reductions. European Archives of Psychiatry and Clinical Neuroscience, 2021, 271, 595-607.	3.2	40
86	Developmental coâ€regulation of the β and γ GABA _A receptor subunits with distinct α subunits in the human dorsolateral prefrontal cortex. International Journal of Developmental Neuroscience, 2010, 28, 513-519.	1.6	39
87	Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia. PLoS ONE, 2011, 6, e25194.	2.5	37
88	Apolipoproteinâ€D expression is increased during development and maturation of the human prefrontal cortex. Journal of Neurochemistry, 2009, 109, 1053-1066.	3.9	36
89	High White Matter Neuron Density with Elevated Cortical Cytokine Expression in Schizophrenia. Biological Psychiatry, 2014, 75, e5-e7.	1.3	36
90	Effect of maternal immune activation on the kynurenine pathway in preadolescent rat offspring and on MK801-induced hyperlocomotion in adulthood: Amelioration by COX-2 inhibition. Brain, Behavior, and Immunity, 2014, 41, 173-181.	4.1	35

#	Article	IF	CITATIONS
91	A conserved mRNA expression profile of SREB2 (GPR85) in adult human, monkey, and rat forebrain. Molecular Brain Research, 2005, 138, 58-69.	2.3	34
92	In Vivo Imaging of Translocator Protein in Long-term Cannabis Users. JAMA Psychiatry, 2019, 76, 1305.	11.0	34
93	Gene Expression Analysis Implicates a Death Receptor Pathway in Schizophrenia Pathology. PLoS ONE, 2012, 7, e35511.	2.5	33
94	Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. Journal of Neuroinflammation, 2020, 17, 215.	7.2	33
95	A schizophrenia subgroup with elevated inflammation displays reduced microglia, increased peripheral immune cell and altered neurogenesis marker gene expression in the subependymal zone. Translational Psychiatry, 2021, 11, 635.	4.8	33
96	The Impact of Childhood Adversity on Cognitive Development in Schizophrenia. Schizophrenia Bulletin, 2020, 46, 140-153.	4.3	31
97	Transcriptional Interaction of an Estrogen Receptor Splice Variant and ErbB4 Suggests Convergence in Gene Susceptibility Pathways in Schizophrenia. Journal of Biological Chemistry, 2009, 284, 18824-18832.	3.4	30
98	Discordant changes in cortical TrkC mRNA and protein during the human lifespan. European Journal of Neuroscience, 2005, 21, 2433-2444.	2.6	29
99	The effect of gonadectomy on prepulse inhibition and fear-potentiated startle in adolescent rhesus macaques. Psychoneuroendocrinology, 2010, 35, 896-905.	2.7	29
100	Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Molecular Psychiatry, 2022, 27, 2052-2060.	7.9	29
101	Overexpression of Neuregulin 1 Type III Confers Hippocampal mRNA Alterations and Schizophrenia-Like Behaviors in Mice. Schizophrenia Bulletin, 2018, 44, 865-875.	4.3	28
102	Differential expression of synaptic and interneuron genes in the aging human prefrontal cortex. Neurobiology of Aging, 2018, 70, 194-202.	3.1	28
103	Selective Estrogen Receptor Modulation Increases Hippocampal Activity during Probabilistic Association Learning in Schizophrenia. Neuropsychopharmacology, 2015, 40, 2388-2397.	5.4	27
104	Important unanswered questions about adult neurogenesis in schizophrenia. Current Opinion in Psychiatry, 2019, 32, 170-178.	6.3	27
105	The effect of adolescent testosterone on hippocampal BDNF and TrkB mRNA expression: relationship with cell proliferation. BMC Neuroscience, 2015, 16, 4.	1.9	26
106	THE NEUROANATOMY AND NEUROCHEMISTRY OF SCHIZOPHRENIA. Psychiatric Clinics of North America, 1998, 21, 57-75.	1.3	25
107	Relationship between somatostatin and death receptor expression in the orbital frontal cortex in schizophrenia: a postmortem brain mRNA study. NPJ Schizophrenia, 2015, 1, 14004.	3.6	25
108	Conadectomy negatively impacts social behavior of adolescent male primates. Hormones and Behavior, 2009, 56, 140-148.	2.1	24

#	Article	IF	CITATIONS
109	Differential Response to Risperidone in Schizophrenia Patients by <i>KCNH2</i> Genotype and Drug Metabolizer Status. American Journal of Psychiatry, 2016, 173, 53-59.	7.2	24
110	White matter neuron biology and neuropathology in schizophrenia. NPJ Schizophrenia, 2019, 5, 10.	3.6	24
111	Levels of glial cell lineâ€derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson's disease. Brain Pathology, 2019, 29, 813-825.	4.1	24
112	Neurocognitive effects of transcranial direct current stimulation (tDCS) in unipolar and bipolar depression: Findings from an international randomized controlled trial. Depression and Anxiety, 2020, 37, 261-272.	4.1	24
113	Evidence of aberrant DNA damage response signalling but normal rates of DNA repair in dividing lymphoblasts from patients with schizophrenia. World Journal of Biological Psychiatry, 2012, 13, 114-125.	2.6	23
114	Regional, cellular and species difference of two key neuroinflammatory genes implicated in schizophrenia. Brain, Behavior, and Immunity, 2020, 88, 826-839.	4.1	23
115	Temporal proteomic profiling of postnatal human cortical development. Translational Psychiatry, 2018, 8, 267.	4.8	22
116	Neutrophil–lymphocyte ratio – a simple, accessible measure of inflammation, morbidity and prognosis in psychiatric disorders?. Australasian Psychiatry, 2020, 28, 454-458.	0.7	22
117	Transcriptomic Analysis Shows Decreased Cortical Expression of NR4A1, NR4A2 and RXRB in Schizophrenia and Provides Evidence for Nuclear Receptor Dysregulation. PLoS ONE, 2016, 11, e0166944.	2.5	22
118	Full length TrkB potentiates estrogen receptor alpha mediated transcription suggesting convergence of susceptibility pathways in schizophrenia. Molecular and Cellular Neurosciences, 2011, 46, 67-78.	2.2	21
119	Schizophrenia-relevant behaviours of female mice overexpressing neuregulin 1 type III. Behavioural Brain Research, 2018, 353, 227-235.	2.2	21
120	Neuregulin 1 Expression and Electrophysiological Abnormalities in the Neuregulin 1 Transmembrane Domain Heterozygous Mutant Mouse. PLoS ONE, 2015, 10, e0124114.	2.5	21
121	Peripheral complement is increased in schizophrenia and inversely related to cortical thickness. Brain, Behavior, and Immunity, 2022, 101, 423-434.	4.1	21
122	Reduced adult neurogenesis is associated with increased macrophages in the subependymal zone in schizophrenia. Molecular Psychiatry, 2021, 26, 6880-6895.	7.9	20
123	Testosterone Is Inversely Related to Brain Activity during Emotional Inhibition in Schizophrenia. PLoS ONE, 2013, 8, e77496.	2.5	19
124	Differential DNA damage in response to the neonatal and adult excitotoxic hippocampal lesion in rats. European Journal of Neuroscience, 2000, 12, 4424-4433.	2.6	18
125	Increases in [3H]Muscimol and [3H]Flumazenil Binding in the Dorsolateral Prefrontal Cortex in Schizophrenia Are Linked to 1±4 and 1³2S mRNA Levels Respectively. PLoS ONE, 2013, 8, e52724.	2.5	18
126	Changes in NMDA Receptor Subunit mRNAs and Cyclophilin mRNA during Development of the Human Hippocampus. Annals of the New York Academy of Sciences, 2003, 1003, 426-430.	3.8	17

#	Article	IF	CITATIONS
127	Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone. Developmental Brain Research, 2003, 140, 1-13.	1.7	17
128	Neuropathology of Suicide Annals of the New York Academy of Sciences, 1997, 836, 201-219.	3.8	16
129	Specific developmental reductions in subventricular zone ErbB1 and ErbB4 mRNA in the human brain. International Journal of Developmental Neuroscience, 2008, 26, 791-803.	1.6	16
130	Adolescent testosterone influences BDNF and TrkB mRNA and neurotrophin–interneuron marker relationships in mammalian frontal cortex. Schizophrenia Research, 2015, 168, 661-670.	2.0	16
131	Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia. Molecular Brain, 2021, 14, 96.	2.6	16
132	Kv channel interacting protein 3 expression and regulation by haloperidol in midbrain dopaminergic neurons. Brain Research, 2009, 1304, 1-13.	2.2	15
133	Endogenous testosterone levels are associated with neural activity in men with schizophrenia during facial emotion processing. Behavioural Brain Research, 2015, 286, 338-346.	2.2	15
134	Raloxifene increases prefrontal activity during emotional inhibition in schizophrenia based on estrogen receptor genotype. European Neuropsychopharmacology, 2016, 26, 1930-1940.	0.7	15
135	Brain morphology is differentially impacted by peripheral cytokines in schizophrenia-spectrum disorder. Brain, Behavior, and Immunity, 2021, 95, 299-309.	4.1	15
136	Testosterone attenuates and the selective estrogen receptor modulator, raloxifene, potentiates amphetamine-induced locomotion in male rats. Hormones and Behavior, 2015, 70, 73-84.	2.1	14
137	Raloxifene Improves Cognition in Schizophrenia: Spurious Result or Valid Effect?. Frontiers in Psychiatry, 2017, 8, 202.	2.6	14
138	Blood and brain protein levels of ubiquitin-conjugating enzyme E2K (UBE2K) are elevated in individuals with schizophrenia. Journal of Psychiatric Research, 2019, 113, 51-57.	3.1	14
139	Altered levels of immune cell adhesion molecules are associated with memory impairment in schizophrenia and healthy controls. Brain, Behavior, and Immunity, 2020, 89, 200-208.	4.1	14
140	The Weaver GIRK2 Mutation Leads to Decreased Levels of Serum Thyroid Hormone: Characterization of the Effect on Midbrain Dopaminergic Neuron Survival. Experimental Neurology, 1999, 160, 413-424.	4.1	13
141	What's Hot in Schizophrenia Research?. Psychiatric Clinics of North America, 2016, 39, 343-351.	1.3	12
142	Reduction in IGF1 mRNA in the Human Subependymal Zone During Aging. , 2019, 10, 197.		12
143	Trajectory of change in brain complement factors from neonatal to young adult humans. Journal of Neurochemistry, 2021, 157, 479-493.	3.9	12
144	Peripheral NF-κB dysregulation in people with schizophrenia drives inflammation: putative anti-inflammatory functions of NF-κB kinases. Translational Psychiatry, 2022, 12, 21.	4.8	12

#	Article	IF	CITATIONS
145	Expression analysis of the genes identified in GWAS of the postmortem brain tissues from patients with schizophrenia. Neuroscience Letters, 2014, 568, 12-16.	2.1	11
146	Pre-treatment attentional processing speed and antidepressant response to transcranial direct current stimulation: Results from an international randomized controlled trial. Brain Stimulation, 2018, 11, 1282-1290.	1.6	11
147	Increased plasma Brain-Derived Neurotrophic Factor (BDNF) levels in females with schizophrenia. Schizophrenia Research, 2019, 209, 212-217.	2.0	11
148	Effect of Immune Activation during Early Gestation or Late Gestation on Inhibitory Markers in Adult Male Rats. Scientific Reports, 2020, 10, 1982.	3.3	11
149	Alterations in the kynurenine pathway and excitatory amino acid transporter-2 in depression with and without psychosis: Evidence of a potential astrocyte pathology. Journal of Psychiatric Research, 2022, 147, 203-211.	3.1	11
150	Virtual Ontogeny of Cortical Growth Preceding Mental Illness. Biological Psychiatry, 2022, 92, 299-313.	1.3	11
151	Exploring the moderating effects of dopaminergic polymorphisms and childhood adversity on brain morphology in schizophrenia-spectrum disorders. Psychiatry Research - Neuroimaging, 2018, 281, 61-68.	1.8	10
152	Transcriptional changes in the stress pathway are related to symptoms in schizophrenia and to mood in schizoaffective disorder. Schizophrenia Research, 2019, 213, 87-95.	2.0	10
153	An Interleukin-1 beta (IL1B) haplotype linked with psychosis transition is associated with IL1B gene expression and brain structure. Schizophrenia Research, 2019, 204, 201-205.	2.0	10
154	FKBP5 Messenger RNA Increases After Adolescence in Human Dorsolateral Prefrontal Cortex. Biological Psychiatry, 2016, 80, e29-e31.	1.3	9
155	Reduced Insulin-Like Growth Factor Family Member Expression Predicts Neurogenesis Marker Expression in the Subependymal Zone in Schizophrenia and Bipolar Disorder. Schizophrenia Bulletin, 2021, 47, 1168-1178.	4.3	9
156	BDNF val66met genotype and schizotypal personality traits interact to influence probabilistic association learning. Behavioural Brain Research, 2014, 274, 137-142.	2.2	8
157	Striatal but not frontal cortical up-regulation of the epidermal growth factor receptor in rats exposed to immune activation in utero and cannabinoid treatment in adolescence. Psychiatry Research, 2016, 240, 260-264.	3.3	8
158	Behavioural effects of high fat diet in adult Nrg1 type III transgenic mice. Behavioural Brain Research, 2020, 377, 112217.	2.2	8
159	Identifying gene expression profiles associated with neurogenesis and inflammation in the human subependymal zone from development through aging. Scientific Reports, 2022, 12, 40.	3.3	8
160	Earlyâ€life decline in neurogenesis markers and ageâ€related changes of TrkB splice variant expression in the human subependymal zone. European Journal of Neuroscience, 2017, 46, 1768-1778.	2.6	7
161	Evidence for enhanced androgen action in the prefrontal cortex of people with bipolar disorder but not schizophrenia or major depressive disorder. Psychiatry Research, 2019, 280, 112503.	3.3	7
162	Cortisol-dehydroepiandrosterone ratios are inversely associated with hippocampal and prefrontal brain volume in schizophrenia. Psychoneuroendocrinology, 2021, 123, 104916.	2.7	7

#	Article	IF	CITATIONS
163	S33. REDUCTION IN PERIPHERAL C-REACTIVE PROTEIN LEVELS WITH CANAKINUMAB ADMINISTRATION IS RELATED TO REDUCED POSITIVE SYMPTOM SEVERITY IN PATIENTS WITH SCHIZOPHRENIA AND INFLAMMATION. Schizophrenia Bulletin, 2019, 45, S318-S318.	4.3	6
164	N-MethylAspartate receptor and inflammation in dorsolateral prefrontal cortex in schizophrenia. Schizophrenia Research, 2022, 240, 61-70.	2.0	6
165	Frontal and Parietal Contributions to Probabilistic Association Learning. Cerebral Cortex, 2011, 21, 1879-1888.	2.9	5
166	Anti-N-methyl-D-aspartate encephalitis – a case study of symptomatic progression. Australasian Psychiatry, 2015, 23, 422-425.	0.7	5
167	Considerations for optimal use of postmortem human brains for molecular psychiatry: lessons from schizophrenia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 221-235.	1.8	5
168	Reduced type III neuregulin 1 expression does not modulate the behavioural sensitivity of mice to acute Δ 9 -tetrahydrocannabinol (D 9 -THC). Pharmacology Biochemistry and Behavior, 2018, 170, 64-70.	2.9	5
169	Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process?. Biological Psychiatry, 2019, 85, e35-e39.	1.3	5
170	Raloxifene augmentation in men and women with a schizophrenia spectrum disorder: A study protocol. Contemporary Clinical Trials Communications, 2020, 20, 100681.	1.1	5
171	Restriction Enzyme Based Enriched L1Hs Sequencing (REBELseq): A Scalable Technique for Detection of Ta Subfamily L1Hs in the Human Genome. G3: Genes, Genomes, Genetics, 2020, 10, 1647-1655.	1.8	4
172	Effects of handling on the behavioural phenotype of the neuregulin 1 type III transgenic mouse model for schizophrenia. Behavioural Brain Research, 2021, 405, 113166.	2.2	4
173	Maternal immune activation with high molecular weight poly(I:C) in Wistar rats leads to elevated immune cell chemoattractants. Journal of Neuroimmunology, 2022, 364, 577813.	2.3	4
174	Early Life Stress Alters Expression of Glucocorticoid Stress Response Genes and Trophic Factor Transcripts in the Rodent Basal Ganglia. International Journal of Molecular Sciences, 2022, 23, 5333.	4.1	4
175	Hormone modulation improves cognition in schizophrenia. Neuropsychopharmacology, 2016, 41, 384-385.	5.4	3
176	Sex-Specific Associations of Androgen Receptor CAG Trinucleotide Repeat Length and of Raloxifene Treatment with Testosterone Levels and Perceived Stress in Schizophrenia. Molecular Neuropsychiatry, 2019, 5, 28-41.	2.9	3
177	A new suspect in the unsolved case of neuroinflammation in schizophrenia. Molecular Psychiatry, 2021, , .	7.9	3
178	Reproductive hormones and schizophrenia. Schizophrenia Research, 2015, 168, 601-602.	2.0	2
179	O1.5. ICAM-1 IS INCREASED IN BRAIN AND PERIPHERAL LEVELS OF SOLUBLE ICAM-1 IS RELATED TO COGNITIVE DEFICITS IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S73-S74.	4.3	2
180	O1.6. INCREASED COMPLEMENT FACTORS C3 AND C4 IN SCHIZOPHRENIA AND THE EARLY STAGES OF PSYCHOSIS: IMPLICATIONS FOR CLINICAL SYMPTOMATOLOGY AND CORTICAL THICKNESS. Schizophrenia Bulletin, 2018, 44, S74-S74.	4.3	2

#	Article	IF	CITATIONS
181	Where There's Smoke, There's Fire—But Who Is Lighting the Match? Bolstering Transcriptional Evidence for the Role of Nuclear Factor-κB in Neuroimmune Activation in Schizophrenia. Biological Psychiatry, 2019, 85, 5-7.	1.3	2
182	4.1 COGNITIVE RESERVE ATTENUATES AGE-RELATED COGNITIVE DECLINE IN THE CONTEXT OF ACCELERATED BRAIN AGEING IN SCHIZOPHRENIA-SPECTRUM DISORDERS: EVIDENCE FOR ACTIVE COMPENSATION. Schizophrenia Bulletin, 2019, 45, S91-S92.	4.3	1
183	M174. REDUCED CHEMOKINE SIGNALLING CAPACITY IS ASSOCIATED WITH INHIBITORY INTERNEURON DYSFUNCTION IN SUBCORTICAL BRAIN REGIONS IN SCHIZOPHRENIA AND BIPOLAR DISORDER. Schizophrenia Bulletin, 2020, 46, S202-S203.	4.3	1
184	Impact of gonadectomy on maturational changes in brain volume in adolescent macaques. Psychoneuroendocrinology, 2021, 124, 105068.	2.7	1
185	Aumento de los valores de las proteÃnas neurregulina 1 y ErbB4 en la corteza prefrontal de pacientes esquizofrénicos. Psiquiatria Biologica, 2010, 17, 54-62.	0.1	0
186	ISDN2014_0222: Adolescent cannabinoid exposure after maternal immune activation increases proliferation in the adult subventricular zone. International Journal of Developmental Neuroscience, 2015, 47, 67-67.	1.6	0
187	40.1 INFLAMMATORY CYTOKINES ARE ELEVATED IN THE MIDBRAIN IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S64-S64.	4.3	Ο
188	O11.5. INCREASED INFLAMMATION AND MACROPHAGE INFILTRATION IS ASSOCIATED WITH ALTERED SUBEPENDYMAL ZONE NEUROGENESIS IN SCHIZOPHRENIA BUT NOT BIPOLAR DISORDER. Schizophrenia Bulletin, 2020, 46, S28-S29.	4.3	0
189	M62. PERIPHERAL INFLAMMATION MARKERS IDENTIFY SUBSET OF PATIENTS WITH SCHIZOPHRENIA AND RELATED PSYCHOSES WHO HAVE INTELLECTUAL DECLINE FROM PREMORBID LEVELS. Schizophrenia Bulletin, 2020, 46, S158-S159.	4.3	0
190	O11.2. ELEVATION OF MACROPHAGE-RELATED TRANSCRIPTS IN THE MIDBRAIN IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2020, 46, S27-S28.	4.3	0