Sarbajit Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3366869/publications.pdf

Version: 2024-02-01

239 papers 10,190 citations

²⁶⁶³⁰
56
h-index

91 g-index

245 all docs

 $\begin{array}{c} 245 \\ \text{docs citations} \end{array}$

times ranked

245

12780 citing authors

#	Article	IF	Citations
1	Photopolymerized superhydrophobic hybrid coating enabled by dual-purpose tetrapodal ZnO for liquid/liquid separation. Materials Horizons, 2022, 9, 452-461.	12.2	12
2	Probing Relaxation Dynamics and Stepped Domain Switching in Boronâ€Alloyed VO ₂ . Advanced Electronic Materials, 2022, 8, 2100932.	5.1	5
3	Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation. Nature Materials, 2022, 21, 217-227.	27.5	35
4	Topochemical stabilization and single-crystal transformations of a metastable 2D γʹ-V2O5 intercalation cathode. Cell Reports Physical Science, 2022, 3, 100712.	5.6	5
5	Cation reordering instead of phase transitions: Origins and implications of contrasting lithiation mechanisms in $10\ \hat{l}_{}^{}$ - and $20\ \hat{l}_{}^{}$ - 2022 , sub> 2022 , where 2022 is the United States of America, 2022 ,	7.1	11
6	Lone but Not Alone: Precise Positioning of Lone Pairs for the Design of Photocatalytic Architectures. Chemistry of Materials, 2022, 34, 1439-1458.	6.7	12
7	A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil. ACS Omega, 2022, 7, 1547-1574.	3.5	14
8	Near-Ambient Nanocomposite Thermochromic Fenestration Elements from Post-Encapsulation-Annealed Tungsten-Alloyed Vanadium(IV) Oxide Nanocrystals. ACS Applied Energy Materials, 2022, 5, 4829-4839.	5.1	4
9	Multiscale Textured Mesh Substrates that Glide Alcohol Droplets and Impede Ice Nucleation. Advanced Engineering Materials, 2022, 24, .	3.5	1
10	Chemical transformations of extraterrestrial soils. Trends in Chemistry, 2022, 4, 260-263.	8.5	3
11	Inverse emulsion-crosslinked cyclodextrin polymer nanoparticles for selective adsorption and chemiresistive sensing of BTEX. Materials Today Chemistry, 2022, 24, 100915.	3.5	1
12	Grid nanoindentation on calcium sulfoaluminate (CSA)-Kaolinite pastes. Construction and Building Materials, 2022, 335, 127523.	7.2	0
13	Decoupling the metal–insulator transition temperature and hysteresis of VO ₂ using Ge alloying and oxygen vacancies. Chemical Communications, 2022, 58, 6586-6589.	4.1	6
14	A deep learned nanowire segmentation model using synthetic data augmentation. Npj Computational Materials, 2022, 8, .	8.7	11
15	A "Li-Eye―View of Diffusion Pathways in a 2D Intercalation Material from Topochemical Single-Crystal Transformation. ACS Energy Letters, 2022, 7, 1960-1962.	17.4	4
16	Thermodynamics of Wettability: A Physical Chemistry Laboratory Experiment. Journal of Chemical Education, 2022, 99, 2689-2696.	2.3	2
17	Building Back Better: Lessons Learned from Sichuan Earthquake on Decarbonizing China's Construction Industry through Microalloying. Matter, 2021, 4, 4-9.	10.0	2
18	Design, synthesis and characterization of fused bithiazole- and dithiophene-based low bandgap thienylene copolymers. Polymer Chemistry, 2021, 12, 5942-5951.	3.9	6

#	Article	IF	Citations
19	Solution-processable porous graphitic carbon from bottom-up synthesis and low-temperature graphitization. Chemical Science, 2021, 12, 8438-8444.	7.4	19
20	Punching above its weight: life cycle energy accounting and environmental assessment of vanadium microalloying in reinforcement bar steel. Environmental Sciences: Processes and Impacts, 2021, 23, 275-290.	3.5	7
21	Alkoxy functionalized benzothiadiazole based donor–acceptor conjugated copolymers for organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5113-5123.	5.5	22
22	Electronic structure modulation of MoS2 by substitutional Se incorporation and interfacial MoO3 hybridization: Implications of Fermi engineering for electrocatalytic hydrogen evolution and oxygen evolution. Chemical Physics Reviews, 2021, 2, .	5.7	8
23	Asphaltene Microencapsulation of Bitumen as a Means of Solid-Phase Transport. Energy & Energy	5.1	3
24	Halide Replacement with Complete Preservation of Crystal Lattice in Mixedâ€Anion Lanthanide Oxyhalides. Angewandte Chemie, 2021, 133, 15710-15717.	2.0	1
25	Halide Replacement with Complete Preservation of Crystal Lattice in Mixedâ€Anion Lanthanide Oxyhalides. Angewandte Chemie - International Edition, 2021, 60, 15582-15589.	13.8	11
26	Negative Thermal Expansion HfV ₂ O ₇ Nanostructures for Alleviation of Thermal Stress in Nanocomposite Coatings. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44723-44732.	8.0	7
27	Lessons learned from FeSb2O4 on stereoactive lone pairs as a design principle for anion insertion. Cell Reports Physical Science, 2021, 2, 100592.	5. 6	3
28	Powder bed coating of bitumen with asphaltenes to obtain solid prills for midstream transportation. Fuel, 2021, 302, 121093.	6.4	4
29	A chemo-mechanical damage model at large deformation: numerical and experimental studies on polycrystalline energy materials. International Journal of Solids and Structures, 2021, 228, 111099.	2.7	20
30	Elucidating the Role of Dissolved Organic Matter and Sunlight in Mediating the Formation of Ag–Au Bimetallic Alloy Nanoparticles in the Aquatic Environment. Environmental Science & Environmental	10.0	11
31	Assessing the role of vanadium technologies in decarbonizing hard-to-abate sectors and enabling the energy transition. IScience, 2021, 24, 103277.	4.1	12
32	Structure-Dependent Accessibility of Phonon-Coupled Radiative Relaxation Pathways Probed by X-ray-Excited Optical Luminescence. Journal of Physical Chemistry Letters, 2021, 12, 11170-11175.	4.6	0
33	Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities. Materials Horizons, 2020, 7, 843-854.	12.2	77
34	Curvature-Induced Modification of Mechano-Electrochemical Coupling and Nucleation Kinetics in a Cathode Material. Matter, 2020, 3, 1754-1773.	10.0	18
35	Does Water Enhance Mg Intercalation in Oxides? The Case of a Tunnel Framework. ACS Energy Letters, 2020, 5, 3357-3361.	17.4	13
36	An Atomic View of Cation Diffusion Pathways from Singleâ€Crystal Topochemical Transformations. Angewandte Chemie, 2020, 132, 16527-16534.	2.0	3

#	Article	IF	Citations
37	Toward High-Precision Control of Transformation Characteristics in VO ₂ through Dopant Modulation of Hysteresis. Journal of Physical Chemistry C, 2020, 124, 21223-21231.	3.1	16
38	Frontiers in hybrid and interfacial materials chemistry research. MRS Bulletin, 2020, 45, 951-964.	3. 5	6
39	Lattice Anharmonicity of Stereochemically Active Lone Pairs Controls Thermochromic Band Gap Reduction of PbVO ₃ Cl. Chemistry of Materials, 2020, 32, 7404-7412.	6.7	15
40	Navigating the design space of inorganic materials synthesis using statistical methods and machine learning. Dalton Transactions, 2020, 49, 11480-11488.	3.3	24
41	Atomic Hourglass and Thermometer Based on Diffusion of a Mobile Dopant in VO ₂ . Journal of the American Chemical Society, 2020, 142, 15513-15526.	13.7	23
42	Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS ₂ /CdS Quantum-Dot Heterostructures. ACS Applied Materials & Diterfaces, 2020, 12, 43728-43740.	8.0	42
43	Cyclodextrin-derived polymer networks for selective molecular adsorption. Chemical Communications, 2020, 56, 11783-11786.	4.1	13
44	Three-Dimensional Inverse Opal TiO ₂ Coatings to Enable the Gliding of Viscous Oils. Energy & Energy	5.1	5
45	Celebrating 5 Years of Open Access with <i>ACS Omega</i> . ACS Omega, 2020, 5, 16986-16986.	3.5	2
46	Bending good beats breaking bad: phase separation patterns in individual cathode particles upon lithiation and delithiation. Materials Horizons, 2020, 7, 3275-3290.	12.2	14
47	Enhanced charge storage of nanometric ζ-V ₂ O ₅ in Mg electrolytes. Nanoscale, 2020, 12, 22150-22160.	5. 6	15
48	An Atomic View of Cation Diffusion Pathways from Singleâ€Crystal Topochemical Transformations. Angewandte Chemie - International Edition, 2020, 59, 16385-16392.	13.8	20
49	Designing catalysts for water splitting based on electronic structure considerations. Electronic Structure, 2020, 2, 023001.	2.8	43
50	Reversible Room-Temperature Fluoride-Ion Insertion in a Tunnel-Structured Transition Metal Oxide Host. ACS Energy Letters, 2020, 5, 2520-2526.	17.4	13
51	Electrical vapour sensing with macrocyclic molecular receptors. Supramolecular Chemistry, 2020, 32, 165-177.	1.2	7
52	Metal-Insulator Transitions in $\hat{l}^2\hat{a}$ \in 2-Cu V2O5 Mediated by Polaron Oscillation and Cation Shuttling. Matter, 2020, 2, 1166-1186.	10.0	9
53	In situ Resource Utilization and Reconfiguration of Soils Into Construction Materials for the Additive Manufacturing of Buildings. Frontiers in Materials, 2020, 7, .	2.4	26
54	Hierarchically Textured Oleophobic Internal Coatings that Facilitate Drag Reduction of Viscous Oils in Macroscopic Laminar Flow. Advanced Engineering Materials, 2020, 22, 2000333.	3 . 5	6

#	Article	IF	CITATIONS
55	Optical modulation in hybrid antiresonant hollow-core fiber infiltrated with vanadium dioxide phase change nanocrystals. Optics Letters, 2020, 45, 4240.	3.3	5
56	Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 19691-19695.	10.3	17
57	Chemo-mechanical degradation in V ₂ O ₅ thin film cathodes of Li-ion batteries during electrochemical cycling. Journal of Materials Chemistry A, 2019, 7, 23922-23930.	10.3	24
58	Energy Spotlight. ACS Energy Letters, 2019, 4, 2763-2769.	17.4	1
59	Building Brain-Inspired Logic Circuits from Dynamically Switchable Transition-Metal Oxides. Trends in Chemistry, 2019, 1, 711-726.	8.5	39
60	Functionalized Tetrapodal ZnO Membranes Exhibiting Superoleophobic and Superhydrophilic Character for Water/Oil Separation Based on Differential Wettability. Energy & Superproperty, 2019, 33, 5024-5034.	5.1	21
61	Tortuosity but Not Percolation: Design of Exfoliated Graphite Nanocomposite Coatings for Extended Corrosion Protection of Aluminum Alloys. ACS Applied Nano Materials, 2019, 2, 3100-3116.	5.0	27
62	Machine Learning-Directed Navigation of Synthetic Design Space: A Statistical Learning Approach to Controlling the Synthesis of Perovskite Halide Nanoplatelets in the Quantum-Confined Regime. Chemistry of Materials, 2019, 31, 3281-3292.	6.7	40
63	Magnesium Nanocomposite Coatings for Protection of a Lightweight Al Alloy: Modes of Corrosion Protection, Mechanisms of Failure. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800817.	1.8	6
64	An evaluation of the reduction of heat loss enabled by halloysite modification of oilwell cement. Engineering Research Express, 2019, 1, 025028.	1.6	7
65	Type-II heterostructures of α -V2O5 nanowires interfaced with cadmium chalcogenide quantum dots: Programmable energetic offsets, ultrafast charge transfer, and photocatalytic hydrogen evolution. Journal of Chemical Physics, 2019, 151, 224702.	3.0	6
66	Epitaxial stabilization <i>versus</i> interdiffusion: synthetic routes to metastable cubic HfO ₂ and HfV ₂ O ₇ from the coreâ€"shell arrangement of precursors. Nanoscale, 2019, 11, 21354-21363.	5.6	5
67	Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Science of the Total Environment, 2019, 649, 1189-1197.	8.0	64
68	A full palette: Crystal chemistry, polymorphism, synthetic strategies, and functional applications of lanthanide oxyhalides. Journal of Solid State Chemistry, 2019, 270, 569-592.	2.9	23
69	Formation of Magnesium Dendrites during Electrodeposition. ACS Energy Letters, 2019, 4, 375-376.	17.4	221
70	The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation. Accounts of Chemical Research, 2019, 52, 645-655.	15.6	29
71	In-situ measurements of stress evolution in composite sulfur cathodes. Energy Storage Materials, 2019, 16, 491-497.	18.0	26
72	Separation of Viscous Oil Emulsions Using Three-Dimensional Nanotetrapodal ZnO Membranes. Energy & Lamp; Fuels, 2018, 32, 4894-4902.	5.1	12

#	Article	IF	CITATIONS
73	Striping modulations and strain gradients within individual particles of a cathode material upon lithiation. Materials Horizons, 2018, 5, 486-498.	12.2	17
74	Mapping Catalytically Relevant Edge Electronic States of MoS ₂ . ACS Central Science, 2018, 4, 493-503.	11.3	39
75	Stabilization of a Metastable Tunnelâ€Structured Orthorhombic Phase of VO ₂ upon Iridium Doping. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700884.	1.8	7
76	Reversible Mg-Ion Insertion in a Metastable One-Dimensional Polymorph of V2O5. CheM, 2018, 4, 564-585.	11.7	126
77	Strain and Bond Length Dynamics upon Growth and Transfer of Graphene by NEXAFS Spectroscopy from First-Principles and Experiment. Langmuir, 2018, 34, 1783-1794.	3.5	11
78	Defining Diffusion Pathways in Intercalation Cathode Materials: Some Lessons from V ₂ O ₅ on Directing Cation Traffic. ACS Energy Letters, 2018, 3, 915-931.	17.4	79
79	Modulating the Hysteresis of an Electronic Transition: Launching Alternative Transformation Pathways in the Metal–Insulator Transition of Vanadium(IV) Oxide. Chemistry of Materials, 2018, 30, 214-224.	6.7	20
80	Incorporation of Hydroxyethylcellulose-Functionalized Halloysite as a Means of Decreasing the Thermal Conductivity of Oilwell Cement. Scientific Reports, 2018, 8, 16149.	3.3	17
81	It's Not Over until the Big Ion Dances: Potassium Gets Its Groove On. Joule, 2018, 2, 2194-2197.	24.0	12
82	Elucidating the Crystallite Size Dependence of the Thermochromic Properties of Nanocomposite VO ₂ Thin Films. ACS Omega, 2018, 3, 14280-14293.	3 . 5	14
83	Hole Extraction by Design in Photocatalytic Architectures Interfacing CdSe Quantum Dots with Topochemically Stabilized Tin Vanadium Oxide. Journal of the American Chemical Society, 2018, 140, 17163-17174.	13.7	33
84	Photodegradation of fluorotelomer carboxylic 5:3 acid and perfluorooctanoic acid using zinc oxide. Environmental Pollution, 2018, 243, 637-644.	7. 5	20
85	Stabilization of a Metastable Tunnel-Structured Orthorhombic Phase of VO2 upon Iridium Doping (Phys. Status Solidi A 16â^•2018). Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1870039.	1.8	0
86	Ligand-Mediated Control of Dopant Oxidation State and X-ray Excited Optical Luminescence in Eu-Doped LaOCl. Inorganic Chemistry, 2018, 57, 5842-5849.	4.0	15
87	Ligand-Directed Stabilization of Ternary Phases: Synthetic Control of Structural Dimensionality in Solution-Grown Cesium Lead Bromide Nanocrystals. Chemistry of Materials, 2018, 30, 6144-6155.	6.7	39
88	In a Different Light: Deciphering Optical and X-ray Sensitization Mechanisms in an Expanded Palette of LaOCl Phosphors. Journal of Physical Chemistry C, 2018, 122, 16412-16423.	3.1	11
89	Traversing Energy Landscapes Away from Equilibrium: Strategies for Accessing and Utilizing Metastable Phase Space. Journal of Physical Chemistry C, 2018, 122, 25709-25728.	3.1	75
90	Roadblocks in Cation Diffusion Pathways: Implications of Phase Boundaries for Li-Ion Diffusivity in an Intercalation Cathode Material. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 30901-30911.	8.0	19

#	Article	IF	Citations
91	Stabilization of Ag–Au Bimetallic Nanocrystals in Aquatic Environments Mediated by Dissolved Organic Matter: A Mechanistic Perspective. Environmental Science & Environment	10.0	19
92	Nucleation-controlled hysteresis in unstrained hydrothermal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">V</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> particles. Physical Review Materials, 2018, 2, .	2.4	10
93	Orthogonal Wettability of Hierarchically Textured Metal Meshes as a Means of Separating Water/Oil Emulsions. Advanced Engineering Materials, 2017, 19, 1600808.	3.5	27
94	Mapping the electrocatalytic activity of MoS ₂ across its amorphous to crystalline transition. Journal of Materials Chemistry A, 2017, 5, 5129-5141.	10.3	41
95	Fabrication and Electrochemical Performance of Structured Mesoscale Open Shell V ₂ O ₅ Networks. Langmuir, 2017, 33, 5975-5981.	3.5	11
96	Real-time atomistic observation of structural phase transformations in individual hafnia nanorods. Nature Communications, 2017, 8, 15316.	12.8	59
97	Postsynthetic Route for Modifying the Metalâ€"Insulator Transition of VO ₂ by Interstitial Dopant Incorporation. Chemistry of Materials, 2017, 29, 5401-5412.	6.7	36
98	Intercalation-Induced Exfoliation and Thickness-Modulated Electronic Structure of a Layered Ternary Vanadium Oxide. Chemistry of Materials, 2017, 29, 3285-3294.	6.7	19
99	Direct evidence of M2 phase during the monoclinic-tetragonal (rutile) phase transition of W-doped VO2 nanowires. Applied Physics Letters, 2017, 110, .	3.3	11
100	Looking Outwards from the "Central Science†An Interdisciplinary Perspective on Graduate Education in Materials Chemistry. ACS Symposium Series, 2017, , 65-89.	0.5	3
101	Hybrid Nanocomposite Films Comprising Dispersed VO ₂ Nanocrystals: A Scalable Aqueous-Phase Route to Thermochromic Fenestration. ACS Applied Materials & Diterfaces, 2017, 9, 38887-38900.	8.0	30
102	The electronic structure of ε′-V2O5: an expanded band gap in a double-layered polymorph with increased interlayer separation. Journal of Materials Chemistry A, 2017, 5, 23694-23703.	10.3	10
103	Memristive response of a new class of hydrated vanadium oxide intercalation compounds. MRS Communications, 2017, 7, 634-641.	1.8	7
104	Biomimetic Plastronic Surfaces for Handling of Viscous Oil. Energy & Samp; Fuels, 2017, 31, 9337-9344.	5.1	16
105	Modeling of phase separation across interconnected electrode particles in lithium-ion batteries. RSC Advances, 2017, 7, 41254-41264.	3.6	24
106	Lithiation across interconnected V $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ nanoparticle networks. Journal of Materials Chemistry A, 2017, 5, 20141-20152.	10.3	26
107	X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials. Jom, 2017, 69, 1469-1477.	1.9	10
108	Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr ₃) perovskite nanoplatelets. Journal of Materials Chemistry C, 2017, 5, 8810-8818.	5.5	66

#	Article	IF	Citations
109	Mitigating Cation Diffusion Limitations and Intercalation-Induced Framework Transitions in a 1D Tunnel-Structured Polymorph of V ₂ O ₅ . Chemistry of Materials, 2017, 29, 10386-10397.	6.7	24
110	Evaluation of Multivalent Cation Insertion in Single- and Double-Layered Polymorphs of V ₂ O ₅ . ACS Applied Materials & Interfaces, 2017, 9, 23756-23765.	8.0	64
111	Structure″nduced Switching of the Band Gap, Charge Order, and Correlation Strength in Ternary Vanadium Oxide Bronzes. Chemistry - A European Journal, 2017, 23, 9846-9856.	3.3	3
112	Monitoring Deformation in Graphene Through Hyperspectral Synchrotron Spectroscopy to Inform Fabrication. Journal of Physical Chemistry C, 2017, 121, 15653-15664.	3.1	3
113	Direct Observation of Hafnia Structural Phase Transformations. Microscopy and Microanalysis, 2017, 23, 2092-2093.	0.4	0
114	Building on Sub-Arctic Soil: Geopolymerization of Muskeg to a Densified Load-Bearing Composite. Scientific Reports, 2017, 7, 14711.	3.3	9
115	Aberration corrected STEM and High Resolution EELS study Investigating Magnesium Intercalation in Vanadium Pentoxide Cathode. Microscopy and Microanalysis, 2016, 22, 1318-1319.	0.4	0
116	In situ cooling and heating study of VO 2 phase transition. Microscopy and Microanalysis, 2016, 22, 816-817.	0.4	0
117	Atomic Resolution Studies of W Dopants Effect on the Phase Transformation of VO2. Microscopy and Microanalysis, 2016, 22, 884-885.	0.4	1
118	Programming Interfacial Energetic Offsets and Charge Transfer in β-Pb _{0.33} V ₂ O ₅ /Quantum-Dot Heterostructures: Tuning Valence-Band Edges to Overlap with Midgap States. Journal of Physical Chemistry C, 2016, 120, 28992-29001.	3.1	11
119	Stabilizing metastable tetragonal HfO ₂ using a non-hydrolytic solution-phase route: ligand exchange as a means of controlling particle size. Chemical Science, 2016, 7, 4930-4939.	7.4	29
120	An in Situ Sulfidation Approach for the Integration of MoS ₂ Nanosheets on Carbon Fiber Paper and the Modulation of Its Electrocatalytic Activity by Interfacing with $nC60$. ACS Catalysis, 2016, 6, 6246-6254.	11.2	60
121	Mechanistic Evaluation of Li _{<i>x</i>} O _{<i>y</i>} Formation on Î'-MnO ₂ in Nonaqueous Liâ€"Air Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 23028-23036.	8.0	46
122	Ligand-Mediated Modulation of Layer Thicknesses of Perovskite Methylammonium Lead Bromide Nanoplatelets. Chemistry of Materials, 2016, 28, 6909-6916.	6.7	89
123	Topochemically De-Intercalated Phases of V ₂ O ₅ as Cathode Materials for Multivalent Intercalation Batteries: A First-Principles Evaluation. Chemistry of Materials, 2016, 28, 5611-5620.	6.7	84
124	Selective electrochemical reactivity of rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>VO</mml:mi><mml:mn>2<td>nns:4mml</td><td>:m22b></td></mml:mn></mml:msub></mml:math>	nns:4mml	:m 22 b>
125	Graphene Coatings for the Corrosion Protection of Base Metals. , 2016, , 155-176.		1
126	Vanadium K-Edge X-ray Absorption Spectroscopy as a Probe of the Heterogeneous Lithiation of V ₂ O ₅ : First-Principles Modeling and Principal Component Analysis. Journal of Physical Chemistry C, 2016, 120, 23922-23932.	3.1	52

#	Article	IF	Citations
127	Mapping polaronic states and lithiation gradients in individual V2O5 nanowires. Nature Communications, 2016, 7, 12022.	12.8	115
128	Contrasting 1D tunnel-structured and 2D layered polymorphs of V ₂ O ₅ : relating crystal structure and bonding to band gaps and electronic structure. Physical Chemistry Chemical Physics, 2016, 18, 15798-15806.	2.8	32
129	Directional Charge Transfer Mediated by Mid-Gap States: A Transient Absorption Spectroscopy Study of CdSe Quantum Dot/ \hat{l}^2 -Pb _{0.33} V ₂ O ₅ Heterostructures. Journal of Physical Chemistry C, 2016, 120, 5221-5232.	3.1	25
130	X-ray excited photoluminescence near the giant resonance in solid-solution Gd _{1â^'x} Tb _x OCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd _{1â^'x} Tb _x F ₃ . Nanoscale, 2016, 8, 979-986.	5.6	15
131	Proliferation of metallic domains caused by inhomogeneous heating near the electrically driven transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>VO</mml:mi><mml:mn>2<td>1^{3:2}/mml:r</td><td>n<mark>13</mark>b></td></mml:mn></mml:msub></mml:math>	1 ^{3:2} /mml:r	n <mark>13</mark> b>
132	Separating electric field and thermal effects across the metal-insulator transition in vanadium oxide nanobeams. Applied Physics Letters, 2015, 107, .	3.3	19
133	Determination of Free Electron Density in Sequentially Doped In _x Ga _{1-x} As by Raman Spectroscopy. Applied Spectroscopy, 2015, 69, 239-242.	2.2	3
134	Atomic Layer Deposition of Hafnium(IV) Oxide on Graphene Oxide: Probing Interfacial Chemistry and Nucleation by using Xâ€ray Absorption and Photoelectron Spectroscopies. ChemPhysChem, 2015, 16, 2842-2848.	2.1	7
135	Transformers: the changing phases of low-dimensional vanadium oxide bronzes. Chemical Communications, 2015, 51, 5181-5198.	4.1	75
136	Hybrid nanostructured coatings for corrosion protection of base metals: a sustainability perspective. Materials Research Express, 2015, 2, 032001.	1.6	62
137	Charge density waves in individual nanoribbons of orthorhombic-TaS ₃ . Physical Chemistry Chemical Physics, 2015, 17, 18374-18379.	2.8	6
138	Potential application of tip-enhanced Raman spectroscopy (TERS) in semiconductor manufacturing. , 2015, , .		2
139	Integrating Î ² -Pb _{0.33} V ₂ O ₅ Nanowires with CdSe Quantum Dots: Toward Nanoscale Heterostructures with Tunable Interfacial Energetic Offsets for Charge Transfer. Chemistry of Materials, 2015, 27, 2468-2479.	6.7	20
140	Two-Dimensional Graphene as a Matrix for MALDI Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 1963-1966.	2.8	24
141	Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO ₂ Nanowires. Nano Letters, 2015, 15, 7179-7188.	9.1	52
142	Emptying and filling a tunnel bronze. Chemical Science, 2015, 6, 1712-1718.	7.4	42
143	Ligand-Mediated Control of Dislocation Dynamics and Resulting Particle Morphology of GdOCl Nanocrystals. Small, 2015, 11, 329-334.	10.0	20
144	Microwave-induced nucleation of conducting graphitic domains on silicon carbide surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 011215.	1.2	3

#	Article	IF	Citations
145	Silica-shell encapsulation and adhesion of VO ₂ nanowires to glass substrates: integrating solution-derived VO ₂ nanowires within thermally responsive coatings. Materials Research Express, 2014, 1, 035014.	1.6	11
146	X-ray absorption spectroscopy studies of electronic structure recovery and nitrogen local structure upon thermal reduction of graphene oxide in an ammonia environment. RSC Advances, 2014, 4, 634-644.	3.6	60
147	Synthesis of novel single-walled carbon nanotube—magnesium nanoparticle composites by a solution reduction method. Materials Letters, 2014, 117, 305-308.	2.6	4
148	Raman spectroscopy studies of dopant activation and free electron density of In0.53Ga0.47As via sulfur monolayer doping. Physical Chemistry Chemical Physics, 2014, 16, 6539.	2.8	12
149	Ferroelastic Domain Organization and Precursor Control of Size in Solution-Grown Hafnium Dioxide Nanorods. ACS Nano, 2014, 8, 4678-4688.	14.6	29
150	Intermediate metallic phase in VO ₂ observed with scanning tunneling spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 14183-14188.	2.8	4
151	Graphene oxide and functionalized multi walled carbon nanotubes as epoxy curing agents: a novel synthetic approach to nanocomposites containing active nanostructured fillers. RSC Advances, 2014, 4, 49264-49272.	3.6	51
152	Electronic Phase Transitions of Î-Ag _{<i>x</i>} V ₂ O ₅ Nanowires: Interplay between Geometric and Electronic Structures. Journal of Physical Chemistry C, 2014, 118, 21235-21243.	3.1	17
153	Scalable Hydrothermal Synthesis of Free-Standing VO ₂ Nanowires in the M1 Phase. ACS Applied Materials & Description (2014), 6, 15726-15732.	8.0	48
154	Nanostructured Magnesium Composite Coatings for Corrosion Protection of Low-Alloy Steels. Industrial & Engineering Chemistry Research, 2014, 53, 18873-18883.	3.7	19
155	An electronic structure perspective of graphene interfaces. Nanoscale, 2014, 6, 3444.	5.6	76
156	Atomic Resolution Study of Local Strains in Doped VO2 Nanowires. Microscopy and Microanalysis, 2014, 20, 1074-1075.	0.4	0
157	Ferroelastic Domain Organization in Solution-Grown HfO2 Nanorods. Microscopy and Microanalysis, 2014, 20, 1970-1971.	0.4	0
158	Inside and Outside: X-ray Absorption Spectroscopy Mapping of Chemical Domains in Graphene Oxide. Journal of Physical Chemistry Letters, 2013, 4, 3144-3151.	4.6	48
159	Effective Piezoelectric Response of Substrate-Integrated ZnO Nanowire Array Devices on Galvanized Steel. ACS Applied Materials & Steel.	8.0	26
160	Finite size effects on the structural progression induced by lithiation of V2O5: a combined diffraction and Raman spectroscopy study. Journal of Materials Chemistry A, 2013, 1 , 15265.	10.3	80
161	Quantum dots exhibit less bioaccumulation than free cadmium and selenium in the earthworm <i>Eisenia andrei</i> . Environmental Toxicology and Chemistry, 2013, 32, 1288-1294.	4.3	16
162	On chemical bonding and electronic structure of graphene–metal contacts. Chemical Science, 2013, 4, 494-502.	7.4	59

#	Article	IF	Citations
163	Interactions of Aqueous Ag ⁺ with Fulvic Acids: Mechanisms of Silver Nanoparticle Formation and Investigation of Stability. Environmental Science & Eamp; Technology, 2013, 47, 757-764.	10.0	156
164	Graphene–ferromagnet interfaces: hybridization, magnetization and charge transfer. Nanoscale, 2013, 5, 1902.	5.6	45
165	Oriented Electrophoretic Deposition of GdOCl Nanoplatelets. Journal of Physical Chemistry B, 2013, 117, 1585-1591.	2.6	21
166	Charge Disproportionation and Voltageâ€Induced Metalâ€"Insulator Transitions Evidenced in βâ€Pb _{<i>x</i>} V ₂ O ₅ Nanowires. Advanced Functional Materials, 2013, 23, 153-160.	14.9	28
167	Near-edge x-ray absorption fine structure spectroscopy study of nitrogen incorporation in chemically reduced graphene oxide. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	33
168	In situ near-edge x-ray absorption fine structure spectroscopy investigation of the thermal defunctionalization of graphene oxide. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 061206.	1.2	29
169	Near-edge x-ray absorption fine structure spectroscopy studies of charge redistribution at graphene/dielectric interfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 041205.	1.2	13
170	Electrically driven metal-insulator switching in Î-KxV2O5 nanowires. Applied Physics Letters, 2012, 101, .	3.3	9
171	From Grignard's reagents to well-defined Mg nanostructures: distinctive electrochemical and solution reduction routes. Chemical Communications, 2012, 48, 5169.	4.1	30
172	Elucidating the Influence of Local Structure Perturbations on the Metal–Insulator Transitions of V _{1–<i>x</i>} Mo _{<i>x</i>} O ₂ Nanowires: Mechanistic Insights from an X-ray Absorption Spectroscopy Study. Journal of Physical Chemistry C, 2012, 116, 3728-3736.	3.1	66
173	Reversible Interconversion of a Divalent Vanadium Bronze between \hat{l} and \hat{l}^2 Quasi-1D Structures. Inorganic Chemistry, 2012, 51, 5264-5269.	4.0	21
174	Nanotexturation-induced extreme wettability of an elemental tellurium coating. Journal of Materials Chemistry, 2012, 22, 3335-3339.	6.7	8
175	The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. Science of the Total Environment, 2012, 441, 277-289.	8.0	85
176	Soft X-ray Absorption Spectroscopy Studies of the Electronic Structure Recovery of Graphene Oxide upon Chemical Defunctionalization. Journal of Physical Chemistry C, 2012, 116, 20591-20599.	3.1	65
177	Carbon nanotube/carbon nanofiber growth from industrial by-product gases on low- and high-alloy steels. Carbon, 2012, 50, 4722-4731.	10.3	25
178	A VO-seeded approach for the growth of star-shaped VO2 and V2O5 nanocrystals: facile synthesis, structural characterization, and elucidation of electronic structure. CrystEngComm, 2011, 13, 5328.	2.6	29
179	Colossal above-room-temperature metal–insulator switching of a Wadsley-type tunnel bronze. Chemical Communications, 2011, 47, 4484.	4.1	27
180	Hybrid nanocomposite coatings for corrosion protection of low carbon steel: A substrate-integrated and scalable active–passive approach. Journal of Materials Research, 2011, 26, 837-844.	2.6	11

#	Article	IF	CITATIONS
181	Shape-Controlled Synthesis of Well-Defined Matlockite LnOCl (Ln: La, Ce, Gd, Dy) Nanocrystals by a Novel Non-Hydrolytic Approach. Inorganic Chemistry, 2011, 50, 5539-5544.	4.0	59
182	A Substrate-Integrated and Scalable Templated Approach Based on Rusted Steel for the Fabrication of Polypyrrole Nanotube Arrays. ACS Applied Materials & Interfaces, 2011, 3, 1238-1244.	8.0	16
183	An X-ray Absorption Spectroscopy Study of the Cathodic Discharge of Ag ₂ VO ₂ PO ₄ : Geometric and Electronic Structure Characterization of Intermediate phases and Mechanistic Insights. Journal of Physical Chemistry C, 2011. 115. 14437-14447.	3.1	39
184	Microscopic and Nanoscale Perspective of the Metalâ^'Insulator Phase Transitions of VO ₂ : Some New Twists to an Old Tale. Journal of Physical Chemistry Letters, 2011, 2, 745-758.	4.6	139
185	Distinctive finite size effects on the phase diagram and metal–insulator transitions of tungsten-doped vanadium(iv) oxide. Journal of Materials Chemistry, 2011, 21, 5580.	6.7	120
186	Imaging local electronic corrugations and doped regions in graphene. Nature Communications, 2011, 2, 372.	12.8	111
187	Humic Acid-Induced Silver Nanoparticle Formation Under Environmentally Relevant Conditions. Environmental Science & Environmen	10.0	265
188	Single-Nanowire Raman Microprobe Studies of Doping-, Temperature-, and Voltage-Induced Metalâ€"Insulator Transitions of W _{<i>x</i>} V _{1â€"<i>x</i>} O ₂ Nanowires. ACS Nano, 2011, 5, 8861-8867.	14.6	42
189	Differences in Soil Mobility and Degradability between Water-Dispersible CdSe and CdSe/ZnS Quantum Dots. Environmental Science & Environmental Science	10.0	31
190	Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and HfxZr1â^'xO2 nanoparticles with natural organic matter reveal differences dependent on crystal structure. Journal of Hazardous Materials, 2011, 196, 302-310.	12.4	9
191	Synthesis, characterization, and finite size effects on electrical transport of nanoribbons of the charge density wave conductor NbSe ₃ . Nanotechnology, 2011, 22, 485201. Temperature and voltage driven tunable metal-insulator transition in individual <mml:math< td=""><td>2.6</td><td>15</td></mml:math<>	2.6	15
192	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">W</mml:mi><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow></mml:mrow></mml:msub></mml:mrow>	<td>tḫʒV<mml:n< td=""></mml:n<></td>	tḫʒV <mml:n< td=""></mml:n<>
193	Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: Influence of capping-group functionality on the phase-transfer mechanism. Journal of Colloid and Interface Science, 2010, 348, 119-128.	<td>ow>27</td>	ow>27
194	Synthesis, Spectroscopic Characterization, and Observation of Massive Metalâ€"Insulator Transitions in Nanowires of a Nonstoichiometric Vanadium Oxide Bronze. Nano Letters, 2010, 10, 2448-2453.	9.1	41
195	Substrate Hybridization and Rippling of Graphene Evidenced by Near-Edge X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 1247-1253.	4.6	60
196	Controlled dielectrophoretic assembly of carbon nanotubes using real-time electrical detection. Applied Physics Letters, 2009, 94, .	3.3	20
197	Fracture in electrophoretically deposited CdSe nanocrystal films. Journal of Applied Physics, 2009, 105, .	2.5	19
198	Catalytic Growth of Singleâ€Crystalline V ₂ O ₅ Nanowire Arrays. Small, 2009, 5, 1025-1029.	10.0	50

#	Article	IF	CITATIONS
199	Synthesis, Structural Characterization, and Electronic Structure of Single-Crystalline CuxV2O5 Nanowires. Inorganic Chemistry, 2009, 48, 3145-3152.	4.0	44
200	Near Edge X-ray Absorption Fine Structure Spectroscopy Studies of Single-Crystalline V ₂ O ₅ Nanowire Arrays. Journal of Physical Chemistry C, 2009, 113, 7639-7645.	3.1	60
201	Nonhydrolytic Synthesis and Electronic Structure of Ligand-Capped CeO2â^Î and CeOCl Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 14126-14134.	3.1	28
202	VO2 nanosheets exhibiting a well-defined metal–insulator phase transition. Journal of Materials Chemistry, 2009, 19, 2968.	6.7	60
203	Large-Area Chemically Modified Graphene Films: Electrophoretic Deposition and Characterization by Soft X-ray Absorption Spectroscopy. Chemistry of Materials, 2009, 21, 3905-3916.	6.7	265
204	Depressed Phase Transition in Solution-Grown VO ₂ Nanostructures. Journal of the American Chemical Society, 2009, 131, 8884-8894.	13.7	194
205	Precursor control of crystal structure and stoichiometry in twin metal oxide nanocrystals. CrystEngComm, 2009, 11, 841.	2.6	17
206	Natural Organic Matter-Mediated Phase Transfer of Quantum Dots in the Aquatic Environment. Environmental Science & Environment	10.0	62
207	AOT dispersed single-walled carbon nanotubes for transistor device application. Materials Letters, 2008, 62, 843-845.	2.6	20
208	Mechanism of the Electrophoretic Deposition of CdSe Nanocrystal Films:  Influence of the Nanocrystal Surface and Charge. Journal of Physical Chemistry C, 2008, 112, 162-171.	3.1	58
209	Viscoplastic and Granular Behavior in Films of Colloidal Nanocrystals. Physical Review Letters, 2007, 98, 026103.	7.8	40
210	Zeta-Potential Measurements of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 13684-13690.	3.1	348
211	Effects of ozonolysis and subsequent growth of quantum dots on the electrical properties of freestanding single-walled carbon nanotube films. Chemical Physics Letters, 2007, 442, 354-359.	2.6	21
212	Ligand Control of Growth, Morphology, and Capping Structure of Colloidal CdSe Nanorods. Chemistry of Materials, 2007, 19, 2573-2580.	6.7	159
213	Purification strategies and purity visualization techniques for single-walled carbon nanotubes. Journal of Materials Chemistry, 2006, 16, 141-154.	6.7	210
214	Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties. Journal of Applied Physics, 2006, 100, 034316.	2.5	120
215	Imperfect surface order and functionalization in vertical carbon nanotube arrays probed by near edge X-ray absorption fine structure spectroscopy (NEXAFS). Physical Chemistry Chemical Physics, 2006, 8, 5038.	2.8	20
216	Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1â^'xTiO3 perovskite nanocubes. Applied Physics Letters, 2006, 89, 223130.	3.3	72

#	Article	IF	Citations
217	Raman Microprobe Analysis of Elastic Strain and Fracture in Electrophoretically Deposited CdSe Nanocrystal Films. Nano Letters, 2006, 6, 175-180.	9.1	34
218	Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials. Small, 2006, 2, 26-35.	10.0	152
219	Precise positioning of single-walled carbon nanotubes by ac dielectrophoresis. Journal of Vacuum Science & Technology B, 2006, 24, 3173.	1.3	62
220	Routes Towards Separating Metallic and Semiconducting Nanotubes. Journal of Nanoscience and Nanotechnology, 2005, 5, 841-855.	0.9	47
221	Near-Edge X-ray Absorption Fine Structure Investigations of Order in Carbon Nanotube-Based Systemsâ€. Journal of Physical Chemistry B, 2005, 109, 8489-8495.	2.6	76
222	Investigating the structure of boron nitride nanotubes by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Physical Chemistry Chemical Physics, 2005, 7, 1103.	2.8	38
223	Surface Chemistry and Structure of Purified, Ozonized, Multiwalled Carbon Nanotubes Probed by NEXAFS and Vibrational Spectroscopies. ChemPhysChem, 2004, 5, 1416-1422.	2.1	73
224	Interactions of Lanthanide Complexes with Oxidized Single-Walled Carbon Nanotubes. Chemistry of Materials, 2004, 16, 1855-1863.	6.7	29
225	Selective Metallic Tube Reactivity in the Solution-Phase Osmylation of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 2073-2081.	13.7	137
226	Demonstration of Diameter-Selective Reactivity in the Sidewall Ozonation of SWNTs by Resonance Raman Spectroscopy. Nano Letters, 2004, 4, 1445-1450.	9.1	99
227	Ozonized single-walled carbon nanotubes investigated using NEXAFS spectroscopyElectronic supplementary information (ESI) available: experimental details of NEXAFS measurements and data processing. See http://www.rsc.org/suppdata/cc/b3/b315390h/. Chemical Communications, 2004, , 772.	4.1	85
228	Rational Chemical Strategies for Carbon Nanotube Functionalization. Chemistry - A European Journal, 2003, 9, 1898-1908.	3.3	299
229	Hydrothermal synthesis of perovskite nanotubesElectronic supplementary information (ESI) available: energy-dispersive X-ray spectroscopy (EDAX) of the TiO2, BaTiO3 and SrTiO3 nanotubes: (a) TiO2, (b) BaTiO3 and (c) SrTiO3. See http://www.rsc.org/suppdata/cc/b2/b210633g/. Chemical Communications, 2003 408-409.	4.1	157
230	Large-Scale Synthesis of Single-Crystalline Perovskite Nanostructures. Journal of the American Chemical Society, 2003, 125, 15718-15719.	13.7	281
231	In Situ Quantum Dot Growth on Multiwalled Carbon Nanotubes. Journal of the American Chemical Society, 2003, 125, 10342-10350.	13.7	164
232	Selective Borohydride Reduction Using Functionalized Atomic Force Microscopy Tips. Langmuir, 2002, 18, 5055-5057.	3.5	18
233	Rational Sidewall Functionalization and Purification of Single-Walled Carbon Nanotubes by Solution-Phase Ozonolysis. Journal of Physical Chemistry B, 2002, 106, 12144-12151.	2.6	228
234	Functionalization of Carbon Nanotubes with a Metal-Containing Molecular Complex. Nano Letters, 2002, 2, 49-53.	9.1	130

#	Article	IF	CITATIONS
235	Synthesis and Characterization of Carbon Nanotubeâ^'Nanocrystal Heterostructures. Nano Letters, 2002, 2, 195-200.	9.1	343
236	Solubilization of Oxidized Single-Walled Carbon Nanotubes in Organic and Aqueous Solvents through Organic Derivatization. Nano Letters, 2002, 2, 1215-1218.	9.1	131
237	Structural Characterization, Optical Properties, and Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson's Catalyst. Journal of the American Chemical Society, 2002, 124, 8940-8948.	13.7	162
238	Nanoengineered lone-pair active photocatalysts for more efficient water splitting. SPIE Newsroom, 0, ,	0.1	1
239	Nanotubes: Functionalization. , 0, , 3321-3337.		0