
Eva van Rooij

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3366129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of micro <scp>RNA</scp> therapeutics is coming of age. EMBO Molecular Medicine, 2014, 6, 851-864.	6.9	526
2	Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of Fibroblasts Activation. Circulation, 2018, 138, 166-180.	1.6	231
3	Micro <scp>RNA</scp> mimicry blocks pulmonary fibrosis. EMBO Molecular Medicine, 2014, 6, 1347-1356.	6.9	205
4	Profiling proliferative cells and their progeny in damaged murine hearts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12245-E12254.	7.1	154
5	Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertensionâ€induced heart failure. European Journal of Heart Failure, 2013, 15, 650-659.	7.1	146
6	MicroRNA-24 Antagonism Prevents Renal Ischemia Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 2717-2729.	6.1	128
7	Function and Therapeutic Potential of Noncoding RNAs in Cardiac Fibrosis. Circulation Research, 2016, 118, 108-118.	4.5	92
8	Tomo-Seq Identifies SOX9 as a Key Regulator of Cardiac Fibrosis During Ischemic Injury. Circulation, 2017, 136, 1396-1409.	1.6	81
9	Myocyte Enhancer Factor 2 and Class II Histone Deacetylases Control a Gender-Specific Pathway of Cardioprotection Mediated by the Estrogen Receptor. Circulation Research, 2010, 106, 155-165.	4.5	54
10	Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption. Circulation Research, 2017, 121, 1168-1181.	4.5	50
11	Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nature Communications, 2021, 12, 84.	12.8	48
12	Genetics and Genomics of Single-Gene Cardiovascular Diseases. Journal of the American College of Cardiology, 2016, 68, 2831-2849.	2.8	43
13	Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair. Communications Biology, 2021, 4, 146.	4.4	41
14	The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unresponsive to standard heart failure therapy. Scientific Reports, 2020, 10, 9819.	3.3	38
15	Gene expression profiling of hypertrophic cardiomyocytes identifies new players in pathological remodelling. Cardiovascular Research, 2021, 117, 1532-1545.	3.8	37
16	Exosomal MicroRNA Clusters Are Important for the Therapeutic Effect of Cardiac Progenitor Cells. Circulation Research, 2015, 116, 219-221.	4.5	28
17	Phospholamban antisense oligonucleotides improve cardiac function in murine cardiomyopathy. Nature Communications, 2021, 12, 5180.	12.8	24
18	The Efficacy of Cardiac Anti-miR-208a Therapy Is Stress Dependent. Molecular Therapy, 2017, 25, 694-704.	8.2	22

Ενά ναν Rooij

#	Article	IF	CITATIONS
19	CRISPR Craze to Transform Cardiac Biology. Trends in Molecular Medicine, 2019, 25, 791-802.	6.7	21
20	Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Reports, 2022, 39, 110809.	6.4	20
21	Controlled Release of RNAi Molecules by Tunable Supramolecular Hydrogel Carriers. Chemistry - an Asian Journal, 2018, 13, 3501-3508.	3.3	17
22	Protein Aggregation Is an Early Manifestation of Phospholamban p.(Arg14del)–Related Cardiomyopathy: Development of PLN-R14del–Related Cardiomyopathy. Circulation: Heart Failure, 2021, 14, e008532.	3.9	17
23	Spatial transcriptomics unveils ZBTB11 as a regulator of cardiomyocyte degeneration in arrhythmogenic cardiomyopathy. Cardiovascular Research, 2023, 119, 477-491.	3.8	17
24	Epicardial differentiation drives fibro-fatty remodeling in arrhythmogenic cardiomyopathy. Science Translational Medicine, 2021, 13, eabf2750.	12.4	16
25	miR-25 in Heart Failure. Circulation Research, 2014, 115, 610-612.	4.5	15
26	Ischemic tolerance and cardiac repair in the spiny mouse (Acomys). Npj Regenerative Medicine, 2021, 6, 78.	5.2	15
27	Single-Cell Sequencing of the Mammalian Heart. Circulation Research, 2018, 123, 1033-1035.	4.5	14
28	MicroRNA-146a as a Regulator of Cardiac Energy Metabolism. Circulation, 2017, 136, 762-764.	1.6	12
29	AntimiR-34a to Enhance Cardiac Repair After Ischemic Injury. Circulation Research, 2015, 117, 395-397.	4.5	7
30	MicroRNAs as Companion Biomarkers for the Diagnosis and Prognosis of Acute Coronary Syndromes. Circulation Research, 2019, 125, 341-342.	4.5	7
31	CRISPR base editing lowers cholesterol in monkeys. Nature Biotechnology, 2021, 39, 920-921.	17.5	6
32	Fibro-fatty remodelling in arrhythmogenic cardiomyopathy. Basic Research in Cardiology, 2022, 117, 22.	5.9	5
33	Keeping the Heart Fitm2 during Chemotherapy. Molecular Therapy, 2019, 27, 10-12.	8.2	2
34	Defining the pathways of heart regeneration. Nature Cell Biology, 2022, 24, 606-607.	10.3	2
35	Sex Differences in Science. JACC Basic To Translational Science, 2019, 4, 478-479.	4.1	1
36	Turning basic science discoveries into successful commercial opportunities. Cardiovascular Research, 2019, 115, e127-e129.	3.8	0

#	Article	IF	CITATIONS
37	Oxidized lowâ€density lipoproteins as a novel risk factor and therapeutic target for ACM. EMBO Molecular Medicine, 2021, 13, e14789.	6.9	Ο
38	Abstract 786: A Novel Desmoplakin Mutation Contributes to Arrhythmogenic Cardiomyopathy. Circulation Research, 2019, 125, .	4.5	0