Bette T Korber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365951/publications.pdf

Version: 2024-02-01

270 papers

41,366 citations

101 h-index 2828 191 g-index

297 all docs

297 docs citations

times ranked

297

28179 citing authors

#	Article	IF	CITATIONS
1	Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 2020, 182, 812-827.e19.	28.9	3,551
2	Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7552-7557.	7.1	1,708
3	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
4	Timing the Ancestor of the HIV-1 Pandemic Strains. Science, 2000, 288, 1789-1796.	12.6	819
5	Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature, 2004, 432, 769-775.	27.8	784
6	Quantifying Residual HIV-1 Replication in Patients Receiving Combination Antiretroviral Therapy. New England Journal of Medicine, 1999, 340, 1605-1613.	27.0	782
7	A new classification for HIV-1. Nature, 1998, 391, 240-240.	27.8	733
8	Diversity Considerations in HIV-1 Vaccine Selection. Science, 2002, 296, 2354-2360.	12.6	731
9	Structure of a V3-Containing HIV-1 gp120 Core. Science, 2005, 310, 1025-1028.	12.6	696
10	Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. Journal of Experimental Medicine, 2009, 206, 1273-1289.	8.5	684
11	Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies. Journal of Virology, 2004, 78, 13232-13252.	3.4	665
12	Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies. Journal of Virology, 2010, 84, 1439-1452.	3.4	589
13	Envelope-Constrained Neutralization-Sensitive HIV-1 After Heterosexual Transmission. Science, 2004, 303, 2019-2022.	12.6	572
14	The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. Journal of Experimental Medicine, 2009, 206, 1253-1272.	8.5	562
15	Deciphering Human Immunodeficiency Virus Type 1 Transmission and Early Envelope Diversification by Single-Genome Amplification and Sequencing. Journal of Virology, 2008, 82, 3952-3970.	3.4	540
16	Evolution and transmission of stable CTL escape mutations in HIV infection. Nature, 2001, 412, 334-338.	27.8	523
17	An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature, 1998, 391, 594-597.	27.8	479
18	Evolutionary and immunological implications of contemporary HIV-1 variation. British Medical Bulletin, 2001, 58, 19-42.	6.9	423

#	Article	IF	CITATIONS
19	Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology, 2004, 14, 1229-1246.	2.5	409
20	Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nature Medicine, 2007, 13, 100-106.	30.7	400
21	Phenotypic properties of transmitted founder HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6626-6633.	7.1	379
22	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	28.9	379
23	Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. Journal of Experimental Medicine, 2018, 215, 1571-1588.	8.5	366
24	Quantitating the Multiplicity of Infection with Human Immunodeficiency Virus Type 1 Subtype C Reveals a Non-Poisson Distribution of Transmitted Variants. Journal of Virology, 2009, 83, 3556-3567.	3.4	354
25	Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nature Medicine, 2010, 16, 319-323.	30.7	351
26	SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. New England Journal of Medicine, 2022, 386, 1088-1091.	27.0	338
27	Genetic and Neutralization Properties of Subtype C Human Immunodeficiency Virus Type 1 Molecular env Clones from Acute and Early Heterosexually Acquired Infections in Southern Africa. Journal of Virology, 2006, 80, 11776-11790.	3.4	334
28	Protective Efficacy of a Global HIV-1 Mosaic Vaccine against Heterologous SHIV Challenges in Rhesus Monkeys. Cell, 2013, 155, 531-539.	28.9	334
29	Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. Aids, 2014, 28, 163-169.	2.2	334
30	SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host and Microbe, 2021, 29, 529-539.e3.	11.0	324
31	HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature, 2002, 420, 434-439.	27.8	321
32	Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 2021, 373, .	12.6	318
33	Advantage of rare HLA supertype in HIV disease progression. Nature Medicine, 2003, 9, 928-935.	30.7	311
34	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host and Microbe, 2021, 29, 23-31.e4.	11.0	308
35	Emergence of SARS-CoV-2 through recombination and strong purifying selection. Science Advances, 2020, 6, .	10.3	307
36	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305

#	Article	IF	Citations
37	Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables. Journal of Virology, 2010, 84, 1631-1636.	3.4	304
38	Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. Journal of Experimental Medicine, 2009, 206, 1117-1134.	8. 5	295
39	Relative Dominance of Gag p24-Specific Cytotoxic T Lymphocytes Is Associated with Human Immunodeficiency Virus Control. Journal of Virology, 2006, 80, 3122-3125.	3.4	275
40	Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2014, 88, 2489-2507.	3.4	274
41	Consistent Cytotoxic-T-Lymphocyte Targeting of Immunodominant Regions in Human Immunodeficiency Virus across Multiple Ethnicities. Journal of Virology, 2004, 78, 2187-2200.	3.4	270
42	Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet, The, 2018, 392, 232-243.	13.7	269
43	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	28.9	266
44	High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men. PLoS Pathogens, 2010, 6, e1000890.	4.7	263
45	Broadly targeted CD8 ⁺ T cell responses restricted by major histocompatibility complex E. Science, 2016, 351, 714-720.	12.6	260
46	Transmission of Single HIV-1 Genomes and Dynamics of Early Immune Escape Revealed by Ultra-Deep Sequencing. PLoS ONE, 2010, 5, e12303.	2.5	259
47	Signature Pattern Analysis: A Method for Assessing Viral Sequence Relatedness. AIDS Research and Human Retroviruses, 1992, 8, 1549-1560.	1.1	253
48	Design and Pre-Clinical Evaluation of a Universal HIV-1 Vaccine. PLoS ONE, 2007, 2, e984.	2.5	247
49	Clustering Patterns of Cytotoxic T-Lymphocyte Epitopes in Human Immunodeficiency Virus Type 1 (HIV-1) Proteins Reveal Imprints of Immune Evasion on HIV-1 Global Variation. Journal of Virology, 2002, 76, 8757-8768.	3.4	241
50	Selection for Human Immunodeficiency Virus Type 1 Envelope Glycosylation Variants with Shorter V1-V2 Loop Sequences Occurs during Transmission of Certain Genetic Subtypes and May Impact Viral RNA Levels. Journal of Virology, 2005, 79, 6528-6531.	3.4	241
51	The Emergence of Simian/Human Immunodeficiency Viruses. AIDS Research and Human Retroviruses, 1992, 8, 373-386.	1.1	238
52	Founder Effects in the Assessment of HIV Polymorphisms and HLA Allele Associations. Science, 2007, 315, 1583-1586.	12.6	234
53	SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021, 6, 821-823.	13.3	221
54	Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. Journal of Experimental Medicine, 2005, 201, 891-902.	8.5	220

#	Article	IF	CITATIONS
55	Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e75665.	2.5	214
56	Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies. Science Translational Medicine, 2017, 9, .	12.4	212
57	Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nature Medicine, 2010, 16, 324-328.	30.7	211
58	Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nature Immunology, 2006, 7, 173-178.	14.5	209
59	Quantitative Deep Sequencing Reveals Dynamic HIV-1 Escape and Large Population Shifts during CCR5 Antagonist Therapy In Vivo. PLoS ONE, 2009, 4, e5683.	2.5	205
60	Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351. New England Journal of Medicine, 2021, 384, 2352-2354.	27.0	202
61	Maternal HIV-1 viral load and vertical transmission of infection: The Ariel Project for the prevention of HIV transmission from mother to infant. Nature Medicine, 1997, 3, 549-552.	30.7	200
62	Genetic and Phenotypic Analyses of Human Immunodeficiency Virus Type 1 Escape from a Small-Molecule CCR5 Inhibitor. Journal of Virology, 2004, 78, 2790-2807.	3.4	195
63	The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120. AIDS Research and Human Retroviruses, 2012, 28, 1444-1457.	1.1	191
64	Antigenicity and Immunogenicity of a Synthetic Human Immunodeficiency Virus Type 1 Group M Consensus Envelope Glycoprotein. Journal of Virology, 2005, 79, 1154-1163.	3.4	189
65	A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology, 2006, 353, 268-282.	2.4	176
66	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	28.9	173
67	Analysis of V2 Antibody Responses Induced in Vaccinees in the ALVAC/AIDSVAX HIV-1 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e53629.	2.5	165
68	Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. Journal of Clinical Investigation, 2013, 123, 380-93.	8.2	165
69	Modeling sequence evolution in acute HIV-1 infection. Journal of Theoretical Biology, 2009, 261, 341-360.	1.7	162
70	HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC. PLoS Pathogens, 2009, 5, e1000414.	4.7	161
71	Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape. PLoS Pathogens, 2012, 8, e1002721.	4.7	159
72	Immunoinformatics Comes of Age. PLoS Computational Biology, 2006, 2, e71.	3.2	156

#	Article	IF	CITATIONS
73	The SARS-CoV-2 Spike variant D614G favors an open conformational state. Science Advances, 2021, 7, .	10.3	156
74	Immune control of HIV: the obstacles of HLA and viral diversity. Nature Immunology, 2001, 2, 473-475.	14.5	153
75	Evidence of Differential HLA Class I-Mediated Viral Evolution in Functional and Accessory/Regulatory Genes of HIV-1. PLoS Pathogens, 2007, 3, e94.	4.7	153
76	Diversity of V3 Region Sequences of Human Immunodeficiency Viruses Type 1 from the Central African Republic. AIDS Research and Human Retroviruses, 1993, 9, 997-1006.	1.1	150
77	HIV-1 Evolution and Disease Progression. Science, 1996, 274, 1008-1011.	12.6	150
78	Impact of HLA-B Alleles, Epitope Binding Affinity, Functional Avidity, and Viral Coinfection on the Immunodominance of Virus-Specific CTL Responses. Journal of Immunology, 2006, 176, 4094-4101.	0.8	150
79	Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathogens, 2016, 12, e1005520.	4.7	150
80	Genetic and Functional Analysis of Full-Length Human Immunodeficiency Virus Type 1 env Genes Derived from Brain and Blood of Patients with AIDS. Journal of Virology, 2003, 77, 12336-12345.	3.4	149
81	jpHMM: Improving the reliability of recombination prediction in HIV-1. Nucleic Acids Research, 2009, 37, W647-W651.	14.5	145
82	Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathogens, 2015, 11, e1005042.	4.7	145
83	Definition of the viral targets of protective HIV-1-specific T cell responses. Journal of Translational Medicine, 2011, 9, 208.	4.4	143
84	HIV-Host Interactions: Implications for Vaccine Design. Cell Host and Microbe, 2016, 19, 292-303.	11.0	143
85	Fitness Costs and Diversity of the Cytotoxic T Lymphocyte (CTL) Response Determine the Rate of CTL Escape during Acute and Chronic Phases of HIV Infection. Journal of Virology, 2011, 85, 10518-10528.	3.4	141
86	Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature, 2014, 505, 502-508.	27.8	140
87	Quantifying the Diversification of Hepatitis C Virus (HCV) during Primary Infection: Estimates of the In Vivo Mutation Rate. PLoS Pathogens, 2012, 8, e1002881.	4.7	139
88	T-Cell Vaccine Strategies for Human Immunodeficiency Virus, the Virus with a Thousand Faces. Journal of Virology, 2009, 83, 8300-8314.	3.4	137
89	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	12.8	137
90	Enhanced Detection of Human Immunodeficiency Virus Type 1-Specific T-Cell Responses to Highly Variable Regions by Using Peptides Based on Autologous Virus Sequences. Journal of Virology, 2003, 77, 7330-7340.	3.4	133

#	Article	IF	Citations
91	HLA Class I-Driven Evolution of Human Immunodeficiency Virus Type 1 Subtype C Proteome: Immune Escape and Viral Load. Journal of Virology, 2008, 82, 6434-6446.	3.4	126
92	Structural diversity of the SARS-CoV-2 Omicron spike. Molecular Cell, 2022, 82, 2050-2068.e6.	9.7	125
93	HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host and Microbe, 2019, 25, 59-72.e8.	11.0	124
94	HIV sequence databases. AIDS Reviews, 2003, 5, 52-61.	1.0	124
95	PUBLIC HEALTH: Enhanced: A Sound Rationale Needed for Phase III HIV-1 Vaccine Trials. Science, 2004, 303, 316-316.	12.6	123
96	Improving Neutralization Potency and Breadth by Combining Broadly Reactive HIV-1 Antibodies Targeting Major Neutralization Epitopes. Journal of Virology, 2015, 89, 2659-2671.	3.4	123
97	A Polymorphism in the Regulatory Region of the CC-Chemokine Receptor 5 Gene Influences Perinatal Transmission of Human Immunodeficiency Virus Type 1 to African-American Infants. Journal of Virology, 1999, 73, 10264-10271.	3.4	123
98	Extensive HLA class I allele promiscuity among viral CTL epitopes. European Journal of Immunology, 2007, 37, 2419-2433.	2.9	120
99	Comparison of Viral Env Proteins from Acute and Chronic Infections with Subtype C Human Immunodeficiency Virus Type 1 Identifies Differences in Glycosylation and CCR5 Utilization and Suggests a New Strategy for Immunogen Design. Journal of Virology, 2013, 87, 7218-7233.	3.4	119
100	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	11.9	119
101	CATNAP: a tool to compile, analyze and tally neutralizing antibody panels. Nucleic Acids Research, 2015, 43, W213-W219.	14.5	118
102	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
103	Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections. PLoS Pathogens, 2011, 7, e1002209.	4.7	114
104	The role of recombination in the emergence of a complex and dynamic HIV epidemic. Retrovirology, 2010, 7, 25.	2.0	110
105	Novel Conserved-region T-cell Mosaic Vaccine With High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection. Molecular Therapy, 2016, 24, 832-842.	8.2	107
106	Role of donor genital tract HIV-1 diversity in the transmission bottleneck. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1156-63.	7.1	106
107	Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Science Translational Medicine, 2017, 9, .	12.4	106
108	A comprehensive system for consistent numbering of HCV sequences, proteins and epitopes. Hepatology, 2006, 44, 1355-1361.	7.3	105

#	Article	IF	Citations
109	HIV-1 Nef is preferentially recognized by CD8 T cells in primary HIV-1 infection despite a relatively high degree of genetic diversity. Aids, 2004, 18, 1383-1392.	2.2	99
110	Characterization of Novel Simian Immunodeficiency Viruses from Red-Capped Mangabeys from Nigeria (SIVrcmNG409 and -NG411). Journal of Virology, 2001, 75, 12014-12027.	3.4	96
111	Unique Mutational Patterns in the Envelope $\hat{l}\pm 2$ Amphipathic Helix and Acquisition of Length in gp120 Hypervariable Domains Are Associated with Resistance to Autologous Neutralization of Subtype C Human Immunodeficiency Virus Type 1. Journal of Virology, 2007, 81, 5658-5668.	3.4	92
112	Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Reports, 2018, 25, 893-908.e7.	6.4	91
113	Human leukocyte antigen-associated sequence polymorphisms in hepatitis C virus reveal reproducible immune responses and constraints on viral evolution. Hepatology, 2007, 46, 339-349.	7.3	90
114	Relationship between Functional Profile of HIV-1 Specific CD8 T Cells and Epitope Variability with the Selection of Escape Mutants in Acute HIV-1 Infection. PLoS Pathogens, 2011, 7, e1001273.	4.7	90
115	HIV-1 Vaccine Development After STEP. Annual Review of Medicine, 2010, 61, 153-167.	12.2	89
116	Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes. Journal of Virological Methods, 2006, 136, 118-125.	2.1	88
117	Role of Maternal Autologous Neutralizing Antibody in Selective Perinatal Transmission of Human Immunodeficiency Virus Type 1 Escape Variants. Journal of Virology, 2006, 80, 6525-6533.	3.4	87
118	Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Science Translational Medicine, 2017, 9 , .	12.4	87
119	A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes. BMC Bioinformatics, 2006, 7, 265.	2.6	85
120	Fitness costs of rifampicin resistance in $\langle scp \rangle \langle i \rangle M \langle i \rangle \langle scp \rangle \langle i \rangle y$ cobacterium tuberculosis $\langle i \rangle$ are amplified under conditions of nutrient starvation and compensated by mutation in the $\hat{l}^2 \hat{a} \in \hat{l}^2$ subunit of $\langle scp \rangle RNA \langle scp \rangle polymerase$. Molecular Microbiology, 2014, 91, 1106-1119.	2.5	85
121	Estimating time since infection in early homogeneous HIV-1 samples using a poisson model. BMC Bioinformatics, 2010, 11, 532.	2.6	83
122	Antigenicity and Immunogenicity of Transmitted/Founder, Consensus, and Chronic Envelope Glycoproteins of Human Immunodeficiency Virus Type 1. Journal of Virology, 2013, 87, 4185-4201.	3.4	83
123	Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nature Communications, 2018, 9, 1928.	12.8	83
124	Using human immunodeficiency virus type 1 sequences to infer historical features of the acquired immune deficiency syndrome epidemic and human immunodeficiency virus evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 855-866.	4.0	82
125	Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization. PLoS Pathogens, 2016, 12, e1005742.	4.7	81
126	Highly complex neutralization determinants on a monophyletic lineage of newly transmitted subtype C HIV-1 Env clones from India. Virology, 2009, 385, 505-520.	2.4	78

#	Article	IF	Citations
127	Genetic Signatures in the Envelope Glycoproteins of HIV-1 that Associate with Broadly Neutralizing Antibodies. PLoS Computational Biology, 2010, 6, e1000955.	3.2	78
128	Limitations of a Molecular Clock Applied to Considerations of the Origin of HIV-1. Science, 1998, 280, 1868-1871.	12.6	77
129	Proteome-wide analysis of HIV-specific naive and memory CD4+ T cells in unexposed blood donors. Journal of Experimental Medicine, 2014, 211, 1273-1280.	8.5	76
130	A centralized gene-based HIV-1 vaccine elicits broad cross-clade cellular immune responses in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10489-10494.	7.1	75
131	Mycobacterium tuberculosis – Heterogeneity revealed through whole genome sequencing. Tuberculosis, 2012, 92, 194-201.	1.9	7 5
132	Impact of Clade, Geography, and Age of the Epidemic on HIV-1 Neutralization by Antibodies. Journal of Virology, 2014, 88, 12623-12643.	3.4	75
133	Elucidation of Hepatitis C Virus Transmission and Early Diversification by Single Genome Sequencing. PLoS Pathogens, 2012, 8, e1002880.	4.7	74
134	Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention. Annual Review of Immunology, 2020, 38, 673-703.	21.8	74
135	HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host and Microbe, 2021, 29, 1093-1110.	11.0	73
136	The prolonged culture of human immunodeficiency virus type 1 in primary lymphocytes increases its sensitivity to neutralization by soluble CD4. Virology, 2004, 321, 8-22.	2.4	72
137	Association between Maternal and Infant Class I and II HLA Alleles and of Their Concordance with the Risk of Perinatal HIV Type 1 Transmission. AIDS Research and Human Retroviruses, 2002, 18, 741-746.	1.1	70
138	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	6.4	69
139	Genetic Evaluation of Suspected Cases of Transient HIV-1 Infection of Infants. Science, 1998, 280, 1073-1077.	12.6	68
140	Epitope Escape Mutation and Decay of Human Immunodeficiency Virus Type 1-Specific CTL Responses. Journal of Immunology, 2003, 171, 5372-5379.	0.8	68
141	HLA-B63 Presents HLA-B57/B58-Restricted Cytotoxic T-Lymphocyte Epitopes and Is Associated with Low Human Immunodeficiency Virus Load. Journal of Virology, 2005, 79, 10218-10225.	3.4	68
142	Potential of conventional & Dispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & Diffections. PLoS Pathogens, 2018, 14, e1006860.	4.7	68
143	Clade-Specific Differences between Human Immunodeficiency Virus Type 1 Clades B and C: Diversity and Correlations in C3-V4 Regions of gp120. Journal of Virology, 2007, 81, 4886-4891.	3.4	66
144	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	11.0	66

#	Article	IF	CITATIONS
145	Los Alamos Hepatitis C Immunology Database. Applied Bioinformatics, 2005, 4, 217-225.	1.6	63
146	Rare HIV-1 transmitted/founder lineages identified by deep viral sequencing contribute to rapid shifts in dominant quasispecies during acute and early infection. PLoS Pathogens, 2017, 13, e1006510.	4.7	63
147	Cross-Subtype T-Cell Immune Responses Induced by a Human Immunodeficiency Virus Type 1 Group M Consensus Env Immunogen. Journal of Virology, 2006, 80, 6745-6756.	3.4	62
148	Extensive Intrasubtype Recombination in South African Human Immunodeficiency Virus Type 1 Subtype C Infections. Journal of Virology, 2007, 81, 4492-4500.	3.4	62
149	Frequent Detection of Escape from Cytotoxic T-Lymphocyte Recognition in Perinatal Human Immunodeficiency Virus (HIV) Type 1 Transmission: the Ariel Project for the Prevention of Transmission of HIV from Mother to Infant. Journal of Virology, 1999, 73, 3975-3985.	3.4	62
150	Expanded Breadth of the T-Cell Response to Mosaic Human Immunodeficiency Virus Type 1 Envelope DNA Vaccination. Journal of Virology, 2009, 83, 2201-2215.	3.4	61
151	Mapping HIV-1 Vaccine Induced T-Cell Responses: Bias towards Less-Conserved Regions and Potential Impact on Vaccine Efficacy in the Step Study. PLoS ONE, 2011, 6, e20479.	2.5	61
152	Host genetic profiles predict virological and immunological control of HIV-1 infection in adolescents. Aids, 2002, 16, 2275-2284.	2.2	58
153	Targeting of a CD8 T Cell Env Epitope Presented by HLA-B*5802 Is Associated with Markers of HIV Disease Progression and Lack of Selection Pressure. AIDS Research and Human Retroviruses, 2008, 24, 72-82.	1.1	58
154	Defining the HLA class lâ€associated viral antigen repertoire from HIVâ€1â€infected human cells. European Journal of Immunology, 2016, 46, 60-69.	2.9	57
155	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	4.7	56
156	Consistent Patterns of Change during the Divergence of Human Immunodeficiency Virus Type 1 Envelope from That of the Inoculated Virus in Simian/Human Immunodeficiency Virus-Infected Macaques. Journal of Virology, 2006, 80, 999-1014.	3.4	55
157	Centralized immunogens as a vaccine strategy to overcome HIV-1 diversity. Expert Review of Vaccines, 2004, 3, S161-S168.	4.4	54
158	A Signature in HIV-1 Envelope Leader Peptide Associated with Transition from Acute to Chronic Infection Impacts Envelope Processing and Infectivity. PLoS ONE, 2011, 6, e23673.	2.5	54
159	A Mechanistic Understanding of Allosteric Immune Escape Pathways in the HIV-1 Envelope Glycoprotein. PLoS Computational Biology, 2013, 9, e1003046.	3.2	53
160	Characterization and Comparison of Recombinant Simian Immunodeficiency Virus from Drill () Tj ETQq0 0 0 rgBT 4867-4880.	/Overlock 3.4	10 Tf 50 14 51
161	The implications of patterns in HIV diversity for neutralizing antibody induction and susceptibility. Current Opinion in HIV and AIDS, 2009, 4, 408-417.	3.8	50
162	Web-based design and evaluation of T-cell vaccine candidates. Bioinformatics, 2008, 24, 1639-1640.	4.1	49

#	Article	IF	Citations
163	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
164	The KIR and CD94/NKG2 families of molecules in the rhesus monkey. Immunological Reviews, 2001, 183, 25-40.	6.0	47
165	jpHMM at GOBICS: a web server to detect genomic recombinations in HIV-1. Nucleic Acids Research, 2006, 34, W463-W465.	14.5	47
166	Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors. Journal of Virology, 2015, 89, 1512-1522.	3.4	47
167	Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens. Virology, 2012, 428, 121-127.	2.4	46
168	Polyvalent vaccine approaches to combat <scp>HIV</scp> †diversity. Immunological Reviews, 2017, 275, 230-244.	6.0	46
169	HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. Journal of Virology, 2018, 92, .	3.4	46
170	Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nature Medicine, 2022, 28, 1288-1296.	30.7	44
171	The <i>TRIM5</i> Gene Modulates Penile Mucosal Acquisition of Simian Immunodeficiency Virus in Rhesus Monkeys. Journal of Virology, 2011, 85, 10389-10398.	3.4	43
172	Full-Length HIV-1 Immunogens Induce Greater Magnitude and Comparable Breadth of T Lymphocyte Responses to Conserved HIV-1 Regions Compared with Conserved-Region-Only HIV-1 Immunogens in Rhesus Monkeys. Journal of Virology, 2012, 86, 11434-11440.	3.4	42
173	A Multivalent Clade C HIV-1 Env Trimer Cocktail Elicits a Higher Magnitude of Neutralizing Antibodies than Any Individual Component. Journal of Virology, 2015, 89, 2507-2519.	3.4	42
174	Vaccine-Induced Linear Epitope-Specific Antibodies to Simian Immunodeficiency Virus SIVmac239 Envelope Are Distinct from Those Induced to the Human Immunodeficiency Virus Type 1 Envelope in Nonhuman Primates. Journal of Virology, 2015, 89, 8643-8650.	3.4	42
175	A multiple-alignment based primer design algorithm for genetically highly variable DNA targets. BMC Bioinformatics, 2013, 14, 255.	2.6	41
176	Maternal viral load and rate of disease progression among vertically HIV-1-infected children. Aids, 2004, 18, 99-108.	2.2	40
177	Genetic Characterization of Diverse HIV-1 Strains in an Immigrant Population Living in New York City. Journal of Acquired Immune Deficiency Syndromes (1999), 2006, 41, 399-404.	2.1	40
178	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	3.4	40
179	T cell-based strategies for HIV-1 vaccines. Human Vaccines and Immunotherapeutics, 2020, 16, 713-722.	3.3	39
180	Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nature Medicine, 2021, 27, 1718-1724.	30.7	39

#	Article	IF	Citations
181	HIV-1 Intrapatient Sequence Diversity in the Immunogenic V3 Region. AIDS Research and Human Retroviruses, 1992, 8, 1461-1465.	1.1	38
182	Analysis of HIV-1 subtype B third variable region peptide motifs for induction of neutralizing antibodies against HIV-1 primary isolates. Virology, 2006, 345, 44-55.	2.4	37
183	Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development. Journal of Immunological Methods, 2015, 416, 105-123.	1.4	37
184	Epigraph: A Vaccine Design Tool Applied to an HIV Therapeutic Vaccine and a Pan-Filovirus Vaccine. Scientific Reports, 2016, 6, 33987.	3.3	35
185	Increased Valency of Conserved-mosaic Vaccines Enhances the Breadth and Depth of Epitope Recognition. Molecular Therapy, 2016, 24, 375-384.	8.2	35
186	First-in-Human Randomized, Controlled Trial of Mosaic HIV-1 Immunogens Delivered via a Modified Vaccinia Ankara Vector. Journal of Infectious Diseases, 2018, 218, 633-644.	4.0	35
187	Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nature Communications, 2019, 10, 2898.	12.8	35
188	Partial Protection of Simian Immunodeficiency Virus (SIV)-Infected Rhesus Monkeys against Superinfection with a Heterologous SIV Isolate. Journal of Virology, 2009, 83, 2686-2696.	3.4	34
189	Cross-Reactive CD8+ T Cell Epitopes Identified in US Adolescent Minorities. Journal of Acquired Immune Deficiency Syndromes (1999), 2003, 33, 426-438.	2.1	33
190	Killer cell immunoglobulinâ€like receptors (KIR) of the Africanâ€origin sabaeus monkey: evidence for recombination events in the evolution of KIR. European Journal of Immunology, 2005, 35, 922-935.	2.9	32
191	Increased Sequence Diversity Coverage Improves Detection of HIV-Specific T Cell Responses. Journal of Immunology, 2007, 179, 6638-6650.	0.8	32
192	Epitope-Specific CD8 ⁺ T Lymphocytes Cross-Recognize Mutant Simian Immunodeficiency Virus (SIV) Sequences but Fail To Contain Very Early Evolution and Eventual Fixation of Epitope Escape Mutations during SIV Infection. Journal of Virology, 2011, 85, 3746-3757.	3.4	32
193	Identification of a Novel Clade of Human Immunodeficiency Virus Type 1 in Democratic Republic of Congo. AIDS Research and Human Retroviruses, 2002, $18,817-823$.	1.1	30
194	Coping with Viral Diversity in HIV Vaccine Design: A Response to Nickle et al PLoS Computational Biology, 2008, 4, e15.	3.2	30
195	Autologous Neutralizing Antibodies to the Transmitted/Founder Viruses Emerge Late after Simian Immunodeficiency Virus SIVmac251 Infection of Rhesus Monkeys. Journal of Virology, 2010, 84, 6018-6032.	3.4	30
196	Distinct Evolutionary Pressures Underlie Diversity in Simian Immunodeficiency Virus and Human Immunodeficiency Virus Lineages. Journal of Virology, 2012, 86, 13217-13231.	3.4	30
197	Characterization and Immunogenicity of a Novel Mosaic M HIV-1 gp140 Trimer. Journal of Virology, 2014, 88, 9538-9552.	3.4	30
198	Increased detection of HIV-specific T cell responses by combination of central sequences with comparable immunogenicity. Aids, 2008, 22, 447-456.	2.2	29

#	Article	IF	CITATIONS
199	Exploring the Role of Glycans in the Interaction of SARS-CoV-2 RBD and Human Receptor ACE2. Viruses, 2021, 13, 927.	3.3	29
200	Cross-reactive monoclonal antibodies to multiple HIV-1 subtype and SIVcpz envelope glycoproteins. Virology, 2009, 394, 91-98.	2.4	28
201	Associations between Amino Acids in the Evolution of HIV Type 1 Protease Sequences under Indinavir Therapy. AIDS Research and Human Retroviruses, 1999, 15, 247-253.	1.1	27
202	Centralized HIV-1 Envelope Immunogens and Neutralizing Antibodies. Current HIV Research, 2007, 5, 572-577.	0.5	27
203	Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity. Journal of General Virology, 2010, 91, 1194-1206.	2.9	27
204	Recombination-mediated escape from primary CD8+ T cells in acute HIV-1 infection. Retrovirology, 2014, 11, 69.	2.0	27
205	Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses, 2015, 7, 5443-5475.	3.3	26
206	HIV Sequence Sigmatires and Similarities. , 2002, , 55-72.		25
207	Epitopes Immediately below the Base of the V3 Loop of gp120 as Targets for the Initial Autologous Neutralizing Antibody Response in Two HIV-1 Subtype B-Infected Individuals. Journal of Virology, 2011, 85, 9286-9299.	3.4	24
208	A Multi-Component Prime-Boost Vaccination Regimen with a Consensus MOMP Antigen Enhances Chlamydia trachomatis Clearance. Frontiers in Immunology, 2016, 7, 162.	4.8	24
209	Histidine 375 Modulates CD4 Binding in HIV-1 CRF01_AE Envelope Glycoproteins. Journal of Virology, 2017, 91, .	3.4	23
210	Panels of HIV-1 Subtype C Env Reference Strains for Standardized Neutralization Assessments. Journal of Virology, 2017, 91, .	3.4	23
211	mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Reports, 2022, 38, 110514.	6.4	23
212	HIV Type 1 V3 Region Primer-Induced Antibody Suppression Is Overcome by Administration of C4-V3 Peptides as a Polyvalent Immunogen. AIDS Research and Human Retroviruses, 1995, 11, 211-221.	1.1	22
213	Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Current Opinion in HIV and AIDS, 2020, 15, 267-274.	3.8	22
214	The Sequential Introduction of HIV-1 Subtype B and CRF01AE in Singapore by Sexual Transmission: Accelerated V3 Region Evolution in a Subpopulation of Asian CRF01 Viruses. Virology, 2002, 304, 311-329.	2.4	21
215	Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Science Translational Medicine, 2022, 14, eabm4908.	12.4	21
216	The evolutionary rate dynamically tracks changes in HIV-1 epidemics: Application of a simple method for optimizing the evolutionary rate in phylogenetic trees with longitudinal data. Epidemics, 2009, 1, 230-239.	3.0	20

#	Article	IF	Citations
217	Designing and Testing Broadly-Protective Filoviral Vaccines Optimized for Cytotoxic T-Lymphocyte Epitope Coverage. PLoS ONE, 2012, 7, e44769.	2.5	20
218	Complete protection of the BALB/c and C57BL/6J mice against Ebola and Marburg virus lethal challenges by pan-filovirus T-cell epigraph vaccine. PLoS Pathogens, 2019, 15, e1007564.	4.7	20
219	A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling. Journal of Immunological Methods, 2013, 395, 1-13.	1.4	19
220	Hepatitis C Genotype 1 Mosaic Vaccines Are Immunogenic in Mice and Induce Stronger T-Cell Responses than Natural Strains. Vaccine Journal, 2013, 20, 302-305.	3.1	19
221	HIV Type 1 Molecular Clones Able to Use the Bonzo/STRL-33 Coreceptor for Virus Entry. AIDS Research and Human Retroviruses, 2001, 17, 217-227.	1.1	18
222	Structure and Function of CC-Chemokine Receptor 5 Homologues Derived from Representative Primate Species and Subspecies of the Taxonomic Suborders Prosimii and Anthropoidea. Journal of Virology, 2003, 77, 12310-12318.	3.4	18
223	T Cell Responses in HIV Type 1-Infected Adolescent Minorities Share Similar Epitope Specificities with Whites Despite Significant Differences in HLA Class I Alleles. AIDS Research and Human Retroviruses, 2003, 19, 1017-1026.	1.1	18
224	HIV-1 intra-subtype superinfection rates: estimates using a structured coalescent with recombination. Infection, Genetics and Evolution, 2005, 5, 85-95.	2.3	18
225	Identification of amino acid substitutions associated with neutralization phenotype in the human immunodeficiency virus type-1 subtype C gp120. Virology, 2011, 409, 163-174.	2.4	18
226	Genital Tract Sequestration of SIV following Acute Infection. PLoS Pathogens, 2011, 7, e1001293.	4.7	18
227	Alternative Effector-Function Profiling Identifies Broad HIV-Specific T-Cell Responses in Highly HIV-Exposed Individuals Who Remain Uninfected. Journal of Infectious Diseases, 2015, 211, 936-946.	4.0	18
228	Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4477-4482.	7.1	18
229	HIV-1 Consensus Envelope-Induced Broadly Binding Antibodies. AIDS Research and Human Retroviruses, 2017, 33, 859-868.	1.1	18
230	Graphâ€based optimization of epitope coverage for vaccine antigen design. Statistics in Medicine, 2018, 37, 181-194.	1.6	18
231	Converging on an HIV Vaccine. Science, 2011, 333, 1589-1590.	12.6	17
232	Effect of Glycosylation on an Immunodominant Region in the V1V2 Variable Domain of the HIV-1 Envelope gp120 Protein. PLoS Computational Biology, 2016, 12, e1005094.	3.2	17
233	Effective Cytotoxic T Lymphocyte Targeting of Persistent HIV-1 during Antiretroviral Therapy Requires Priming of Naive CD8 + T Cells. MBio, 2016, 7, .	4.1	16
234	A single, continuous metric to define tiered serum neutralization potency against HIV. ELife, 2018, 7, .	6.0	16

#	Article	IF	Citations
235	Molecular Characterization of a Highly Divergent HIV Type 1 Isolate Obtained Early in the AIDS Epidemic from the Democratic Republic of Congo. AIDS Research and Human Retroviruses, 2001, 17, 1217-1222.	1.1	14
236	Epigraph hemagglutinin vaccine induces broad cross-reactive immunity against swine H3 influenza virus. Nature Communications, 2021, 12, 1203.	12.8	14
237	Engineering well-expressed, V2-immunofocusing HIV-1 envelope glycoprotein membrane trimers for use in heterologous prime-boost vaccine regimens. PLoS Pathogens, 2021, 17, e1009807.	4.7	13
238	Tetravalent Immunogen Assembled from Conserved Regions of HIV-1 and Delivered as mRNA Demonstrates Potent Preclinical T-Cell Immunogenicity and Breadth. Vaccines, 2020, 8, 360.	4.4	12
239	HIV-1 Reverse Transcriptase: A Diversity Generator and Quasispecies Regulator. Annals of the New York Academy of Sciences, 1993, 693, 65-70.	3.8	11
240	Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail. IScience, 2020, 23, 101836.	4.1	11
241	Search for the Origin of HIV and AIDS. Science, 2000, 289, 1140-1141.	12.6	10
242	Rare HLA Drive Additional HIV Evolution Compared to More Frequent Alleles. AIDS Research and Human Retroviruses, 2009, 25, 297-303.	1.1	10
243	Envelope Vaccination Shapes Viral Envelope Evolution following Simian Immunodeficiency Virus Infection in Rhesus Monkeys. Journal of Virology, 2010, 84, 953-963.	3.4	10
244	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	3.4	10
245	Dendritic cells focus CTL responses toward highly conserved and topologically important HIV-1 epitopes. EBioMedicine, 2021, 63, 103175.	6.1	10
246	Mother-to-Child Transmission in the United States of Subtypes D and A/G Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 2002, 18, 413-417.	1.1	9
247	HIV classification using the coalescent theory. Bioinformatics, 2010, 26, 1409-1415.	4.1	9
248	Modeling sequence evolution in HIV-1 infection with recombination. Journal of Theoretical Biology, 2013, 329, 82-93.	1.7	9
249	Effect of epitope variant co-delivery on the depth of CD8 TÂcell responses induced by HIV-1 conserved mosaic vaccines. Molecular Therapy - Methods and Clinical Development, 2021, 21, 741-753.	4.1	9
250	Evaluation of Different V3 Peptides in an Enzyme Immunoassay for Specific HIV Type 1 Group O Antibody Detection. AIDS Research and Human Retroviruses, 1998, 14, 963-972.	1.1	6
251	Vaccine-Induced CD8+ T Lymphocytes of Rhesus Monkeys Recognize Variant Forms of an HIV Epitope but Do Not Mediate Optimal Functional Activity. Journal of Immunology, 2011, 186, 5663-5674.	0.8	6
252	Estimating the Timing of Early Simian-Human Immunodeficiency Virus Infections: a Comparison between Poisson Fitter and BEAST. MBio, 2020, 11 , .	4.1	6

#	Article	IF	CITATIONS
253	Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial. Journal of Clinical Investigation, $2021,131,.$	8.2	6
254	Recent Evolutionary History of Human Immunodeficiency Virus Type 1 Subtype Bâ€"Response. Journal of Molecular Evolution, 2003, 56, 643-644.	1.8	5
255	Expression and evolutionary analysis of West Nile virus (Merion Strain). Journal of NeuroVirology, 2005, 11, 544-556.	2.1	5
256	Epidemiological and Immunological Implications of the Global Variability of HIV-1., 0, , 1-32.		5
257	Comment to the Letter to the Editor. AIDS Research and Human Retroviruses, 1998, 14, 923-924.	1.1	4
258	Capturing viral diversity for in-vitro test reagents and HIV vaccine immunogen design. Current Opinion in HIV and AIDS, 2007, 2, 183-188.	3.8	4
259	Cross-reactive potential of human T-lymphocyte responses in HIV-1 infection. Vaccine, 2014, 32, 3995-4000.	3.8	4
260	Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail. SSRN Electronic Journal, 0 , , .	0.4	4
261	A Plea for Justice for Jailed Medical Workers. Science, 2006, 314, 924-925.	12.6	3
262	jpHMM: improving the reliability of recombination prediction in HIV-1. Nucleic Acids Research, 2010, 38, 1059-1059.	14.5	3
263	Building on the past to define an efficient path to an HIV vaccine. Expert Review of Vaccines, 2011, 10, 929-931.	4.4	3
264	Integrated sequence and immunology filovirus database at Los Alamos. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw047.	3.0	3
265	Cryptic Multiple HIV-1 Infection Revealed by Early, Frequent, and Deep Sampling during Acute Infection. AIDS Research and Human Retroviruses, 2014, 30, A58-A58.	1.1	2
266	Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathogens, 2021, 17, e1009624.	4.7	2
267	Network Analysis of the Communication Pathways in HIV-1 Envelope Proteins For Mechanistic Understanding of Immune Escape. Biophysical Journal, 2011, 100, 227a-228a.	0.5	0
268	AIDS Research Pioneer Gerry Myers Dies. AIDS Research and Human Retroviruses, 2011, 27, 453-454.	1.1	0
269	HLA and HIV Infection Progression: Application of the Minimum Description Length Principle to Statistical Genetics. Lecture Notes in Computer Science, 2006, , 1-12.	1.3	0
270	Research on infectious disease dynamics. Introduction. Epidemics, 2009, 1, 1.	3.0	0