Mikko Airavaara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365746/publications.pdf

Version: 2024-02-01

80 papers

3,878 citations

34 h-index 59 g-index

83 all docs 83 docs citations

83 times ranked 5179 citing authors

#	Article	IF	CITATIONS
1	Neurobiology of the incubation of drug craving. Trends in Neurosciences, 2011, 34, 411-420.	8.6	555
2	Development and plasticity of meningeal lymphatic vessels. Journal of Experimental Medicine, 2017, 214, 3645-3667.	8.5	311
3	Role of BDNF and GDNF in drug reward and relapse: A review. Neuroscience and Biobehavioral Reviews, 2010, 35, 157-171.	6.1	187
4	Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Frontiers in Physiology, 2019, 10, 486.	2.8	169
5	Mesencephalic astrocyteâ€derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats. Journal of Comparative Neurology, 2009, 515, 116-124.	1.6	132
6	Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) Secretion and Cell Surface Binding Are Modulated by KDEL Receptors. Journal of Biological Chemistry, 2013, 288, 4209-4225.	3.4	127
7	Viral vectors for neurotrophic factor delivery: A gene therapy approach for neurodegenerative diseases of the CNS. Pharmacological Research, 2010, 61, 14-26.	7.1	116
8	CDNF Protects the Nigrostriatal Dopamine System and Promotes Recovery after MPTP Treatment in Mice. Cell Transplantation, 2012, 21, 1213-1223.	2.5	112
9	Targeted Over-Expression of Glutamate Transporter 1 (GLT-1) Reduces Ischemic Brain Injury in a Rat Model of Stroke. PLoS ONE, 2011, 6, e22135.	2.5	94
10	Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 3-14.	4.8	90
11	Identification of Novel GDNF Isoforms and cis-Antisense GDNFOS Gene and Their Regulation in Human Middle Temporal Gyrus of Alzheimer Disease*. Journal of Biological Chemistry, 2011, 286, 45093-45102.	3.4	86
12	Widespread cortical expression of MANF by AAV serotype 7: Localization and protection against ischemic brain injury. Experimental Neurology, 2010, 225, 104-113.	4.1	78
13	Therapeutic potential of the endoplasmic reticulum located and secreted CDNF/MANF family of neurotrophic factors in Parkinson's disease. FEBS Letters, 2015, 589, 3739-3748.	2.8	71
14	MANF Promotes Differentiation and Migration of Neural Progenitor Cells with Potential Neural Regenerative Effects in Stroke. Molecular Therapy, 2018, 26, 238-255.	8.2	71
15	Prospects of Neurotrophic Factors for Parkinson's Disease: Comparison of Protein and Gene Therapy. Human Gene Therapy, 2015, 26, 550-559.	2.7	67
16	Poststroke delivery of MANF promotes functional recovery in rats. Science Advances, 2018, 4, eaap8957.	10.3	64
17	Constitutive Ret Activity in Knock-In Multiple Endocrine Neoplasia Type B Mice Induces Profound Elevation of Brain Dopamine Concentration via Enhanced Synthesis and Increases the Number of TH-Positive Cells in the Substantia Nigra. Journal of Neuroscience, 2007, 27, 4799-4809.	3.6	63
18	Neuron-Specific Genome Modification in the Adult Rat Brain Using CRISPR-Cas9 Transgenic Rats. Neuron, 2019, 102, 105-119.e8.	8.1	62

#	Article	IF	CITATIONS
19	Increased extracellular dopamine concentrations and FosB(ΔFosB expression in striatal brain areas of heterozygous GDNF knockout mice. European Journal of Neuroscience, 2004, 20, 2336-2344.	2.6	53
20	Endogenous GDNF in ventral tegmental area and nucleus accumbens does not play a role in the incubation of heroin craving. Addiction Biology, 2011, 16, 261-272.	2.6	52
21	Local Administration of AAV-BDNF to Subventricular Zone Induces Functional Recovery in Stroke Rats. PLoS ONE, 2013, 8, e81750.	2.5	51
22	Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity. Cell Death and Disease, 2015, 6, e2032-e2032.	6.3	50
23	Update of neurotrophic factors in neurobiology of addiction and future directions. Neurobiology of Disease, 2017, 97, 189-200.	4.4	48
24	MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex. ENeuro, 2017, 4, ENEURO.0214-17.2017.	1.9	48
25	Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei. Development (Cambridge), 2015, 143, 516-29.	2.5	46
26	Differential Spinal and Supraspinal Activation of Glia in a Rat Model of Morphine Tolerance. Neuroscience, 2018, 375, 10-24.	2.3	46
27	In heterozygous GDNF knockout mice the response of striatal dopaminergic system to acute morphine is altered. Synapse, 2006, 59, 321-329.	1.2	45
28	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	9.9	44
29	Chronic nicotine modifies the effects of morphine on extracellular striatal dopamine and ventral tegmental GABA. Journal of Neurochemistry, 2008, 107, 844-854.	3.9	43
30	AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models. Genes, 2017, 8, 63.	2.4	43
31	Characterization of a new lowâ€dose 6â€hydroxydopamine model of Parkinson's disease in rat. Journal of Neuroscience Research, 2016, 94, 318-328.	2.9	39
32	Transgenic animal models of neurodegeneration based on human genetic studies. Journal of Neural Transmission, 2011, 118, 27-45.	2.8	38
33	Neurorestoration. Parkinsonism and Related Disorders, 2012, 18, S143-S146.	2.2	38
34	Implementation of deep neural networks to count dopamine neurons in substantia nigra. European Journal of Neuroscience, 2018, 48, 2354-2361.	2.6	38
35	Developing therapeutically more efficient Neurturin variants for treatment of Parkinson's disease. Neurobiology of Disease, 2016, 96, 335-345.	4.4	36
36	Back and to the Future: From Neurotoxinâ€Induced to Human Parkinson's Disease Models. Current Protocols in Neuroscience, 2020, 91, e88.	2.6	36

#	Article	IF	Citations
37	Multifunctional Nanotube–Mucoadhesive Poly(methyl vinyl etherâ€ <i>co</i> â€maleic) Tj ETQq1 1 0.784314 i	gBT /Over	ock 10 Tf 50 35
	Delivery. Advanced Healthcare Materials, 2017, 6, 1700629.		
38	Post-stroke Intranasal (+)-Naloxone Delivery Reduces Microglial Activation and Improves Behavioral Recovery from Ischemic Injury. ENeuro, 2018, 5, ENEURO.0395-17.2018.	1.9	35
39	Cerebral dopamine neurotrophic factor–deficiency leads to degeneration of enteric neurons and altered brain dopamine neuronal function in mice. Neurobiology of Disease, 2020, 134, 104696.	4.4	33
40	Intrastriatally Infused Exogenous CDNF Is Endocytosed and Retrogradely Transported to Substantia Nigra. ENeuro, 2017, 4, ENEURO.0128-16.2017.	1.9	32
41	Short-term Preoperative Dietary Restriction Is Neuroprotective in a Rat Focal Stroke Model. PLoS ONE, 2014, 9, e93911.	2.5	29
42	Combination of CDNF and Deep Brain Stimulation Decreases Neurological Deficits in Late-stage Model Parkinson's Disease. Neuroscience, 2018, 374, 250-263.	2.3	27
43	<scp>GDNF</scp> / <scp>RET</scp> Signaling Pathway Activation Eliminates Lewy Body Pathology in Midbrain Dopamine Neurons. Movement Disorders, 2020, 35, 2279-2289.	3.9	27
44	Cerebral dopamine neurotrophic factor reduces α-synuclein aggregation and propagation and alleviates behavioral alterations inÂvivo. Molecular Therapy, 2021, 29, 2821-2840.	8.2	26
45	MANF Ablation Causes Prolonged Activation of the UPR without Neurodegeneration in the Mouse Midbrain Dopamine System. ENeuro, 2020, 7, ENEURO.0477-19.2019.	1.9	26
46	Downregulation of tyrosine hydroxylase phenotype after AAV injection above substantia nigra: Caution in experimental models of Parkinson's disease. Journal of Neuroscience Research, 2018, 97, 346-361.	2.9	24
47	Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials, 2020, 227, 119556.	11.4	23
48	Effects of repeated morphine on locomotion, place preference and dopamine in heterozygous glial cell line-derived neurotrophic factor knockout mice. Genes, Brain and Behavior, 2007, 6, 287-298.	2.2	22
49	Nigral injection of a proteasomal inhibitor, lactacystin, induces widespread glial cell activation and shows various phenotypes of Parkinson's disease in young and adult mouse. Experimental Brain Research, 2017, 235, 2189-2202.	1.5	22
50	Pre-α-pro-GDNF and Pre-β-pro-GDNF Isoforms Are Neuroprotective in the 6-hydroxydopamine Rat Model of Parkinson's Disease. Frontiers in Neurology, 2018, 9, 457.	2.4	21
51	Molecular profile of the rat peri-infarct region four days after stroke: Study with MANF. Experimental Neurology, 2020, 329, 113288.	4.1	18
52	A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell Reports, 2021, 35, 109040.	6.4	18
53	Neuroprotective and reparative effects of endoplasmic reticulum luminal proteins – mesencephalic astrocyte-derived neurotrophic factor and cerebral dopamine neurotrophic factor. Croatian Medical Journal, 2019, 60, 99-109.	0.7	17
54	Characterization of the striatal dopaminergic neurotransmission in MEN2B mice with elevated cerebral tissue dopamine. Journal of Neurochemistry, 2008, 105, 1716-1725.	3.9	16

#	Article	IF	Citations
55	Towards developing a model to study alcohol drinking and craving in female mice housed in automated cages. Behavioural Brain Research, 2018, 352, 116-124.	2.2	15
56	9-cis retinoic acid induces neurorepair in stroke brain. Scientific Reports, 2017, 7, 4512.	3.3	14
57	AAV-mediated targeting of gene expression to the peri-infarct region in rat cortical stroke model. Journal of Neuroscience Methods, 2014, 236, 107-113.	2.5	12
58	Secondary Pathology of the Thalamus after Focal Cortical Stroke in Rats is not Associated with Thermal or Mechanical Hypersensitivity and is Not Alleviated by Intra-Thalamic Post-Stroke Delivery of Recombinant CDNF or MANF. Cell Transplantation, 2019, 28, 425-438.	2. 5	12
59	Accumbal <i>μ</i> â€Opioid Receptors Modulate Ethanol Intake in Alcoholâ€Preferring Alko Alcohol Rats. Alcoholism: Clinical and Experimental Research, 2016, 40, 2114-2123.	2.4	11
60	Morphological Heterogeneity of the Endoplasmic Reticulum within Neurons and Its Implications in Neurodegeneration. Cells, 2021, 10, 970.	4.1	11
61	Studying Pre-formed Fibril Induced α-Synuclein Accumulation in Primary Embryonic Mouse Midbrain Dopamine Neurons. Journal of Visualized Experiments, 2020, , .	0.3	11
62	UPR Responsive Genes Manf and Xbp1 in Stroke. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	10
63	Suppression of endogenous PPAR \hat{I}^3 increases vulnerability to methamphetamine-induced injury in mouse nigrostriatal dopaminergic pathway. Psychopharmacology, 2012, 221, 479-492.	3.1	9
64	Cerebral Dopamine Neurotrophic Factor Diffuses Around the Brainstem and Does Not Undergo Anterograde Transport After Injection to the Substantia Nigra. Frontiers in Neuroscience, 2019, 13, 590.	2.8	7
65	Domain-Independent Inhibition of CBP/p300 Attenuates $\hat{l}\pm$ -Synuclein Aggregation. ACS Chemical Neuroscience, 2021, 12, 2273-2279.	3.5	7
66	The \hat{I}^{2} -opioid receptor antagonist JDTic decreases ethanol intake in alcohol-preferring AA rats. Psychopharmacology, 2018, 235, 1581-1591.	3.1	6
67	Neuronal Activation Stimulates Cytomegalovirus Promoter-Driven Transgene Expression. Molecular Therapy - Methods and Clinical Development, 2019, 14, 180-188.	4.1	6
68	Mitoxantrone, pixantrone and mitoxantrone (2-hydroxyethyl)piperazine are toll-like receptor 4 antagonists, inhibit NF-1ºB activation, and decrease TNF-alpha secretion in primary microglia. European Journal of Pharmaceutical Sciences, 2020, 154, 105493.	4.0	6
69	A novel variant in SMG9 causes intellectual disability, confirming a role for nonsense-mediated decay components in neurocognitive development. European Journal of Human Genetics, 2022, 30, 619-627.	2.8	6
70	Nanoscale geometry determines mechanical biocompatibility of vertically aligned nanofibers. Acta Biomaterialia, 2022, 146, 235-247.	8.3	6
71	Modulating Microglia/Macrophage Activation by CDNF Promotes Transplantation of Fetal Ventral Mesencephalic Graft Survival and Function in a Hemiparkinsonian Rat Model. Biomedicines, 2022, 10, 1446.	3.2	6
72	Hesperine, a new imidazole alkaloid and α-synuclein binding activity of 1-methyl-1,2,7,8-tetrahydro-2,8-dioxoadenosine from the marine sponge Clathria (Thalysias) cf. hesperia. Results in Chemistry, 2022, 4, 100302.	2.0	4

#	Article	lF	CITATIONS
73	$\hat{l}\pm$ -Synuclein binding activity of the plant growth promoter asterubine. Bioorganic and Medicinal Chemistry Letters, 2022, 64, 128677.	2.2	4
74	Synthesis of $7\hat{l}^2$ -hydroxy-8-ketone opioid derivatives with antagonist activity at mu- and delta-opioid receptors. European Journal of Medicinal Chemistry, 2018, 151, 495-507.	5.5	3
75	The overexpression of GDNF in nucleus accumbens suppresses alcohol-seeking behavior in group-housed C57Bl/6J female mice. Journal of Biomedical Science, 2021, 28, 87.	7.0	3
76	Cell Culture Media, Unlike the Presence of Insulin, Affect \hat{l}_{\pm} -Synuclein Aggregation in Dopaminergic Neurons. Biomolecules, 2022, 12, 563.	4.0	3
77	Female C57BL/6J Mice Show Alcohol-Seeking Behaviour after Withdrawal from Prolonged Alcohol Consumption in the Social Environment. Alcohol and Alcoholism, 2022, 57, 405-412.	1.6	2
78	P2.002 Intranigral injection of CDNF promotes functional recovery of nigrostriatal dopaminergic circuit in a lesion model of Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, S88-S89.	2.2	1
79	Gene delivery for Parkinson's disease. , 2020, , 597-625.		О
80	Intranasal delivery of recombinant MANF protein is neuroprotective in cortical ischemia-reperfusion injury in rats. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-1-36.	0.0	0