Hilary Downes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365276/publications.pdf

Version: 2024-02-01

41344 64796 6,989 138 49 79 citations h-index g-index papers 142 142 142 3636 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TertiaryQuaternary Extension-Related Alkaline Magmatism in Western and Central Europe. Journal of Petrology, 1991, 32, 811-849.	2.8	398
2	Formation and Modification of the Shallow Sub-continental Lithospheric Mantle: a Review of Geochemical Evidence from Ultramafic Xenolith Suites and Tectonically Emplaced Ultramafic Massifs of Western and Central Europe. Journal of Petrology, 2001, 42, 233-250.	2.8	245
3	Hf–Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 2000, 181, 115-129.	4.4	172
4	Almandine Garnet in Calc-alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern–Central) Tj ETQq0 0 1813-1843.	0 0 rgBT /C 2.8	Overlock 10 7 153
5	Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos, 2007, 99, 1-24.	1.4	149
6	Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos, 2005, 85, 48-75.	1.4	147
7	The Petrogenesis of Pliocene Alkaline Volcanic Rocks from the Pannonian Basin, Eastern Central Europe. Journal of Petrology, 1993, 34, 317-343.	2.8	145
8	Tertiary Ultrapotassic Volcanism in Serbia: Constraints on Petrogenesis and Mantle Source Characteristics. Journal of Petrology, 2005, 46, 1443-1487.	2.8	145
9	Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France. Earth and Planetary Science Letters, 1987, 82, 121-135.	4.4	144
10	The nature of the lower continental crust of Europe: petrological and geochemical evidence from xenoliths. Physics of the Earth and Planetary Interiors, 1993, 79, 195-218.	1.9	135
11	Ultramafic Xenoliths in Plio-Pleistocene Alkali Basalts from the Eastern Transylvanian Basin: Depleted Mantle Enriched by Vein Metasomatism. Journal of Petrology, 1995, 36, 23-53.	2.8	128
12	Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower-crustal granulitic xenoliths (French Massif Central). Chemical Geology, 1990, 83, 209-231.	3.3	124
13	Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Research, 2011, 20, 655-672.	6.0	121
14	Nature and Composition of the Lower Continental Crust in Central Spain and the Granulite-Granite Linkage: Inferences from Granulitic Xenoliths. Journal of Petrology, 1999, 40, 1465-1496.	2.8	117
15	Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contributions To Mineralogy and Petrology, 1992, 109, 340-354.	3.1	116
16	Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf
17	Magmatic constraints on geodynamic models of subduction in the East Carpathians, Romania. Tectonophysics, 1998, 297, 157-176.	2.2	108
18	Crustal Assimilation as a Major Petrogenetic Process in the East Carpathian Neogene and Quaternary Continental Margin Arc, Romania. Journal of Petrology, 1996, 37, 927-959.	2.8	106

#	Article	IF	CITATIONS
19	Petrology and geochemistry of late Tertiary/Quaternary mafic alkaline volcanism in Romania. Lithos, 1995, 35, 65-81.	1.4	101
20	Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): implications for the composition of the shallow lithospheric mantle. Chemical Geology, 1999, 153, 11-35.	3.3	101
21	Compositional diversity of Eocene–Oligocene basaltic magmatism in the Eastern Rhodopes, SE Bulgaria: implications for genesis and tectonic setting. Tectonophysics, 2004, 393, 301-328.	2.2	100
22	Post-collisional Tertiary–Quaternary mafic alkalic magmatism in the Carpathian–Pannonian region: a review. Tectonophysics, 2004, 393, 43-62.	2.2	100
23	Ultramafic Xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for Multiple Metasomatic Events in the Lithospheric Mantle beneath the Wyoming Craton. Journal of Petrology, 2004, 45, 1631-1662.	2.8	97
24	Mafic Granulite Xenoliths in Neogene Alkali Basalts from the Western Pannonian Basin: Insights into the Lower Crust of a Collapsed Orogen. Journal of Petrology, 1997, 38, 941-970.	2.8	94
25	Evidence from polymict ureilite meteorites for a disrupted and re-accreted single ureilite parent asteroid gardened by several distinct impactors. Geochimica Et Cosmochimica Acta, 2008, 72, 4825-4844.	3.9	90
26	Isotopic and trace-element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chemical Geology, 1988, 68, 291-308.	3.3	89
27	Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics, 1992, 208, 173-182.	2.2	88
28	Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos, 2004, 78, 263-290.	1.4	86
29	Tectonic significance of changes in post-subduction Pliocene–Quaternary magmatism in the south east part of the Carpathian–Pannonian Region. Tectonophysics, 2011, 502, 146-157.	2.2	85
30	Petrology and geochemistry of xenoliths from the Northern Baltic shield: evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane. Lithos, 1995, 36, 157-184.	1.4	82
31	Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos, 2000, 51, 47-73.	1.4	82
32	Relationship between deformation, equilibration temperatures, REE and radiogenic isotopes in mantle xenoliths (Ray Pic, Massif Central, France): an example of plume-lithosphere interaction?. Contributions To Mineralogy and Petrology, 1997, 127, 187-203.	3.1	80
33	Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chemical Geology, 1996, 127, 25-42.	3.3	78
34	Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites. Contributions To Mineralogy and Petrology, 1998, 130, 288-303.	3.1	76
35	Mantle domains in the lithosphere beneath the French Massif Central: trace element and isotopic evidence from mantle clinopyroxenes. Chemical Geology, 2003, 200, 71-87.	3.3	76
36	The quartz-diorites of Limousin: Elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central. Chemical Geology, 1993, 107, 1-18.	3.3	75

#	Article	IF	CITATIONS
37	U–Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: a record of geological evolution from the Archaean to the Palaeozoic. Lithos, 2000, 51, 95-108.	1.4	74
38	Magmagenesis in a subduction-related post-collisional volcanic arc segment: the Ukrainian Carpathians. Lithos, 2001, 57, 237-262.	1.4	74
39	Sr, Nd al36 (1997) 99–122 Hercynian granodiorites and monzogranites, Massif Central, France. Chemical Geology, 1997, 136, 99-122.	3.3	73
40	Garnet Granulite Xenoliths from the Northern Baltic Shield-the Underplated Lower Crust of a Palaeoproterozoic Large Igneous Province?. Journal of Petrology, 2001, 42, 731-763.	2.8	73
41	Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkaline Volcanic Rocks in the Western Carpathian Arc, Eastern Central Europe. Journal of Petrology, 2007, 48, 2261-2287.	2.8	71
42	Shear zones in the upper mantleâ€"Relation between geochemical enrichment and deformation in mantle peridotites. Geology, 1990, 18, 374.	4.4	70
43	Geochemistry and Sr–Nd isotopic compositions of mantle xenoliths from the Monte Vulture carbonatite–melilitite volcano, central southern Italy. Contributions To Mineralogy and Petrology, 2002, 144, 78-92.	3.1	69
44	Tertiary-Quaternary intra-plate magmatism in Europe and its relationship to mantle dynamics. Geological Society Memoir, 2006, 32, 147-166.	1.7	69
45	Lower crustal granulite xenoliths from the Pannonian Basin, Hungary, Part 2: Sr–Nd–Pb–Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust. Contributions To Mineralogy and Petrology, 2003, 144, 671-683.	3.1	68
46	Sr and Nd isotope geochemistry of coexisting alkaline magma series, Cantal, Massif Central, France. Earth and Planetary Science Letters, 1984, 69, 321-334.	4.4	64
47	U–Th–Pb and Lu–Hf isotopic constraints on the evolution of sub-continental lithospheric mantle, French Massif Central. Geochimica Et Cosmochimica Acta, 2007, 71, 1290-1311.	3.9	62
48	Geochemical response of magmas to Neogene–Quaternary continental collision in the Carpathian–Pannonian region: A review. Tectonophysics, 2005, 410, 485-499.	2.2	58
49	Pb and O isotope systematics in granulite facies xenoliths, French Massif Central: implications for crustal processes. Earth and Planetary Science Letters, 1991, 102, 342-357.	4.4	56
50	Petrogenesis of Devonian lamprophyre and carbonatite minor intrusions, Kandalaksha Gulf (Kola) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50 2
51	A petrological, mineralogical, and chemical analysis of the lunar mare basalt meteorite LaPaz Icefield 02205, 02224, and 02226. Meteoritics and Planetary Science, 2006, 41, 1003-1025.	1.6	50
52	Miocene subduction-related magmatism in southern Sardinia: Sr–Nd- and oxygen isotopic evidence for mantle source enrichment. Journal of Volcanology and Geothermal Research, 2001, 106, 1-22.	2.1	49
53	Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos, 1997, 40, 295-319.	1.4	48
54	Dating the mantle roots of young continental crust. Geology, 2006, 34, 237.	4.4	46

#	Article	IF	Citations
55	Lower crustal granulite xenoliths from the Pannonian Basin, Hungary. Part 1: mineral chemistry, thermobarometry and petrology. Contributions To Mineralogy and Petrology, 2003, 144, 652-670.	3.1	44
56	Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region. Geological Society Memoir, 2006, 32, 167-190.	1.7	44
57	Pyroxenites and megacrysts from Vitim picrite-basalts (Russia): Polybaric fractionation of rising melts in the mantle?. Journal of Asian Earth Sciences, 2011, 42, 14-37.	2.3	44
58	Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambrian Research, 2009, 168, 197-212.	2.7	43
59	The lithospheric mantle and lower crust–mantle relationships under Scotland: a xenolithic perspective. Journal of the Geological Society, 2011, 168, 873-886.	2.1	43
60	The relationship between crustal magmatic underplating and granite genesis: an example from the Velay granite complex, Massif Central, France. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83, 235-245.	0.3	41
61	Proterozoic zircon ages from lower crustal granulite xenoliths, Kola Peninsula, Russia: evidence for crustal growth and reworking. Journal of the Geological Society, 2002, 159, 485-488.	2.1	40
62	Natural experimental charges: an ion-microprobe study of trace element distribution coefficients in glass-rich hornblendite and clinopyroxenite xenoliths. Lithos, 2004, 75, 1-17.	1.4	37
63	Spinel-peridotite xenoliths from Kapfenstein (Graz Basin, Eastern Austria): A geochemical and petrological study. Mineralogy and Petrology, 1996, 57, 23-50.	1.1	36
64	Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths. Lithos, 2007, 94, 1-24.	1.4	36
65	Characteristics of the lithospheric mantle beneath East Serbia inferred from ultramafic xenoliths in Palaeogene basanites. Contributions To Mineralogy and Petrology, 2004, 148, 335-357.	3.1	35
66	In situ Serpentinization and Hydrous Fluid Metasomatism in Spinel Dunite Xenoliths from the Bearpaw Mountains, Montana, USA. Journal of Petrology, 2009, 50, 1443-1475.	2.8	34
67	Tertiary and Quaternary volcanism in the Massif Central, France. Geological Society Special Publication, 1987, 30, 517-530.	1.3	33
68	Lower crustal granulite xenoliths from the Arkhangelsk kimberlite pipes: petrological, geochemical and geophysical results. Lithos, 2000, 51, 135-151.	1.4	33
69	Petrology and Geochemistry of Granulite Xenoliths from Udachnaya and Komsomolskaya Kimberlite Pipes, Siberia. Journal of Petrology, 2011, 52, 1857-1885.	2.8	33
70	MicroRaman spectroscopy of diamond and graphite in Almahata Sitta and comparison with other ureilites. Meteoritics and Planetary Science, 2011, 46, 364-378.	1.6	32
71	Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola. Tectonophysics, 2012, 530-531, 128-151.	2.2	32
72	Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons. Gondwana Research, 2013, 23, 4-24.	6.0	32

#	Article	IF	CITATIONS
73	The first samples from Almahata Sitta showing contacts between ureilitic and chondritic lithologies: Implications for the structure and composition of asteroid 2008 <scp>TC</scp> ₃ . Meteoritics and Planetary Science, 2019, 54, 2769-2813.	1.6	32
74	From catastrophic collapse to multi-phase deposition: Flow transformation, seafloor interaction and triggered eruption following a volcanic-island landslide. Earth and Planetary Science Letters, 2019, 517, 135-147.	4.4	32
75	Granulitic xenoliths from the French Massif Centralâ€"petrology, Sr and Nd isotope systematics and model age estimates. Geological Society Special Publication, 1986, 24, 319-330.	1.3	31
76	Geochemistry of mafic and ultramafic xenoliths from Fidra (Southern Uplands, Scotland): implications for lithospheric processes in Permo-Carboniferous times. Lithos, 2001, 58, 105-124.	1.4	31
77	Metasomatic effects in the lithospheric mantle beneath the NE Bohemian Massif: A case study of Lutynia (SW Poland) peridotite xenoliths. Lithos, 2010, 117, 49-60.	1.4	29
78	Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics, 2014, 634, 55-75.	2.2	28
79	Generation of normal and adakite-like calc-alkaline magmas in a non-subductional environment: An Sr–O–H isotopic study of the Apuseni Mountains neogene magmatic province, Romania. Chemical Geology, 2007, 245, 70-88.	3.3	25
80	Monomineral universal clinopyroxene and garnet barometers forÂperidotitic, eclogitic and basaltic systems. Geoscience Frontiers, 2017, 8, 775-795.	8.4	25
81	The lower crust of SE Belarus: petrological, geophysical and geochemical constraints from xenoliths. Tectonophysics, 2001, 339, 215-237.	2.2	24
82	Metasomatic Processes Revealed by Trace Element and Redox Signatures of the Lithospheric Mantle Beneath the Massif Central, France. Journal of Petrology, 2017, 58, 395-422.	2.8	23
83	INAA, IDMS and SIMS comparative REE investigations of clinopyroxenes from mantle xenoliths with different textures. Chemical Geology, 1994, 118, 85-108.	3.3	22
84	Structure of the deep crust beneath the Central Indian Tectonic Zone: An integration of geophysical and xenolith data. Gondwana Research, 2010, 17, 162-170.	6.0	22
85	Geodynamic significance of ultramafic xenoliths from Eastern Serbia: Relics of sub-arc oceanic mantle?. Journal of Geodynamics, 2007, 43, 504-527.	1.6	19
86	Petrology and geochemistry of a cumulate xenolith suite from Bute: evidence for late Palaeozoic crustal underplating beneath SW Scotland. Journal of the Geological Society, 2007, 164, 1217-1231.	2.1	19
87	Modification of the subcontinental mantle beneath East Serbia: Evidence from orthopyroxene-rich xenoliths. Lithos, 2007, 94, 90-110.	1.4	19
88	Lower-Crustal Xenoliths from Jurassic Kimberlite Diatremes, Upper Michigan (USA): Evidence for Proterozoic Orogenesis and Plume Magmatism in the Lower Crust of the Southern Superior Province. Journal of Petrology, 2013, 54, 575-608.	2.8	19
89	The U, Th and Pb elemental and isotope compositions of mantle clinopyroxenes and their grain boundary contamination derived from leaching and digestion experiments. Geochimica Et Cosmochimica Acta, 2009, 73, 469-488.	3.9	18
90	Picroilmenites in Yakutian kimberlites: variations and genetic models. Solid Earth, 2014, 5, 915-938.	2.8	18

#	Article	IF	Citations
91	Evidence for magma heterogeneity in the White River Ash (Yukon Territory). Canadian Journal of Earth Sciences, 1985, 22, 929-934.	1.3	17
92	Determination of Incompatible Trace Elements in Mantle Clinopyroxenes by LA-ICP-MS: A Comparison of Analytical Performance with Established Techniques. Geostandards and Geoanalytical Research, 1999, 23, 157-172.	3.1	17
93	Oxidation State of the Lithospheric Mantle below the Massif Central, France. Journal of Petrology, 2014, 55, 2457-2480.	2.8	17
94	Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types ofÂmantle sub-terranes beneath central Yakutia?. Geoscience Frontiers, 2017, 8, 671-692.	8.4	17
95	Lower crustal contamination of Deccan Traps magmas: evidence from tholeiitic dykes and granulite xenoliths from western India. Mineralogy and Petrology, 2008, 93, 243-272.	1.1	16
96	Petrology and geochemistry of Mesozoic igneous rocks, BÃ $^1\!\!/\!\!4$ kk Mountains, Hungary. Lithos, 1990, 24, 201-215.	1.4	15
97	Trace-element abundances in the shallow lithospheric mantle of the North Atlantic Craton margin: Implications for melting and metasomatism beneath Northern Scotland. Mineralogical Magazine, 2015, 79, 877-907.	1.4	15
98	Hf–Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: implications for Lu–Hf dating of spinel peridotite lithospheric mantle. International Journal of Earth Sciences, 2015, 104, 89-102.	1.8	15
99	Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia (Russia). Geoscience Frontiers, 2017, 8, 693-710.	8.4	15
100	The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geoscience Frontiers, 2015, 6, 687-714.	8.4	14
101	Isotope and trace-element heterogeneities in high-grade basic metamorphic rocks of Marvejols: Tectonic implications for the hercynian suture zone of the French Massif Central. Lithos, 1989, 24, 37-54.	1.4	13
102	The lower crust beneath cratonic north-east Europe: isotopic constraints from garnet granulite xenoliths. Terra Nova, 2001, 13, 395-400.	2.1	13
103	Cryptic metasomatism in clino- and orthopyroxene in the upper mantle beneath the Pannonian region. Geological Society Special Publication, 2010, 337, 177-194.	1.3	13
104	Aillikites and Alkali Ultramafic Lamprophyres of the Beloziminsky Alkaline Ultrabasic-Carbonatite Massif: Possible Origin and Relations with Ore Deposits. Minerals (Basel, Switzerland), 2020, 10, 404.	2.0	13
105	Comparison of mantle lithosphere beneath early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts. Geoscience Frontiers, 2016, 7, 639-662.	8.4	12
106	Magma mixing in undersaturated alkaline volcanics, Cantal, Massif Central, France. Mineralogical Magazine, 1989, 53, 43-53.	1.4	12
107	Petrological Evolution of the European Lithospheric Mantle: from Archean to Present Day. Journal of Petrology, 2009, 50, 1181-1184.	2.8	11
108	Continuing the Carbonatite Controversy Preface. Mineralogical Magazine, 2012, 76, 255-257.	1.4	11

#	Article	IF	Citations
109	Textures in spinel peridotite mantle xenoliths using micro-CT scanning: Examples from Canary Islands and France. Lithos, 2017, 276, 90-102.	1.4	11
110	Isotopic composition of carbon and nitrogen in ureilitic fragments of the Almahata Sitta meteorite. Meteoritics and Planetary Science, 2015, 50, 255-272.	1.6	10
111	Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids. International Journal of Earth Sciences, 2018, 107, 1657-1688.	1.8	10
112	Mafic alkaline metasomatism in the lithosphere underneath East Serbia: evidence from the study of xenoliths and the host alkali basalts. Geological Society Special Publication, 2010, 337, 213-239.	1.3	9
113	Petrological evolution of the European lithospheric mantle: introduction. Geological Society Special Publication, 2010, 337, 1-5.	1.3	9
114	An analysis of Apollo lunar soil samples 12070,889, 12030,187, and 12070,891: Basaltic diversity at the Apollo 12 landing site and implications for classification of smallâ€sized lunar samples. Meteoritics and Planetary Science, 2016, 51, 1654-1677.	1.6	9
115	Discovery of a meteoritic ejecta layer containing unmelted impactor fragments at the base of Paleocene lavas, Isle of Skye, Scotland. Geology, 2018, 46, 171-174.	4.4	9
116	Searching for nonlocal lithologies in the Apollo 12 regolith: A geochemical and petrological study of basaltic coarse fines from the Apollo lunar soil sample 12023,155. Meteoritics and Planetary Science, 2014, 49, 1288-1304.	1.6	8
117	Mush remobilisation and mafic recharge: A study of the crystal cargo of the 2013–17 eruption at Volcán de Colima, Mexico. Journal of Volcanology and Geothermal Research, 2021, 416, 107296.	2.1	8
118	Petrology and geodynamical interpretation of mantle xenoliths from Late Cretaceous lamprophyres, Villány Mts (S Hungary). Tectonophysics, 2010, 489, 43-54.	2.2	6
119	Geochronology of Metamorphic Events in the Lower Crust beneath NW Russia: a Xenolith Hf Isotope Study. Journal of Petrology, 2017, 58, 1567-1589.	2.8	6
120	Mantle source heterogeneity in subduction zones: constraints from elemental and isotope (Sr, Nd,) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
121	Ree and Sr-Nd Isotope Compositions of Clinopyroxenites, Phoscorites and Carbonatites of the Seblyavr Massif, Kola Peninsula, Russia. Mineralogia, 2007, 38, 29-45.	0.8	5
122	Quantitative characterization of textures in mantle spinel peridotite xenoliths. Geological Society Special Publication, 2010, 337, 195-211.	1.3	5
123	Petrology of a nonindigenous microgranitic clast in polymict ureilite <scp>EET</scp> 87720: Evidence for formation of evolved melt on an unknown parent body. Meteoritics and Planetary Science, 2015, 50, 1613-1623.	1.6	5
124	Thermobarometry and Geochemistry of Mantle Xenoliths from Zapolyarnaya Pipe, Upper Muna Field, Yakutia: Implications for Mantle Layering, Interaction with Plume Melts and Diamond Grade. Minerals (Basel, Switzerland), 2020, 10, 755.	2.0	5
125	The age of the lower crust of the central part of the Columbia supercontinent: A review of zircon data. Gondwana Research, 2021, 96, 37-55.	6.0	5
126	A chemostratigraphic investigation of the prehistoric Vavalaci lava sequence on Mount Etna: Simulating borehole drilling. Lithos, 2011, 125, 423-433.	1.4	4

#	Article	IF	CITATIONS
127	Incompatible element-enriched mantle lithosphere beneath kimberlitic pipes in Priazovie, Ukrainian shield: volatile-enriched focused melt flow and connection to mature crust?. International Geology Review, 2021, 63, 1288-1309.	2.1	4
128	Deep mantle roots of the Zarnitsa kimberlite pipe, Siberian craton, Russia: Evidence for multistage polybaric interaction with mantle melts. Journal of Asian Earth Sciences, 2021, 213, 104756.	2.3	4
129	Miocene extension and magma generation in the Apuseni Mts. (western Romania): a review. International Geology Review, 2022, 64, 1885-1911.	2.1	4
130	Metasomatic Reaction Phenomena from Entrainment to Surface Cooling: Evidence from Mantle Peridotite Xenoliths from Bulgaria. Journal of Petrology, 2017, 58, 599-640.	2.8	2
131	High-Alumina Pyroxenite Xenoliths from Quaternary Basalt of Spitsbergen Island: Evidence for Continental Crust Delamination. Doklady Earth Sciences, 2019, 485, 413-417.	0.7	1
132	MELANIE JANE RAY (1973–2018). Mineralogical Magazine, 2019, 83, 151-151.	1.4	1
133	Reconstructions of lithospheric mantle beneath Aldan shield based on deep-seated xenocrysts from lamprophyres of Chompolo field, Russia. Journal of Earth System Science, 2021, 130, 1.	1.3	1
134	K. Thomson and N. Petford (editors). Structure and Emplacement of High-Level Magmatic Systems. The Geological Society, London, Special Publications, 2008, vol. 302, 240 pp. List Price A£85, Hardback. ISBN 978-1-86239-256-4 Mineralogical Magazine, 2010, 74, 183-183.	1.4	1
135	F. Wall and A.N. Zaitsev (editors) Phoscorites and Carbonatites from Mantle to Mine: the key example of the Kola Alkaline Province. 2004, $xv + 498$ pp. Price £89.00 (US \$160) (members of the Mineralogical) Tj ETQ	q 11.1 4 0.784	431.4 rgBT /(
136	Robin Clayton 1960–2005. Mineralogical Magazine, 2006, 70, 743-744.	1.4	0
137	P. Henderson and G.M. Henderson. The Cambridge Handbook of Earth Science Data. Cambridge University Press, 2009, 220 pp. ISBN-13: 9780521693172. Paperback £17.99 Mineralogical Magazine, 2010, 7 802-802.	41.4	0
138	A. Hall Igneous Petrology, 2nd edition. London (Longman Group), 1996. xiv + 552 pp. Price £26.99. ISBN 0-582-23080-2. Mineralogical Magazine, 1996, 60, 855-856.	1.4	0