Thomas Charles Buckland McLeish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365217/publications.pdf

Version: 2024-02-01

185 papers 13,143 citations

51
h-index

23533 111 g-index

195 all docs 195
docs citations

195 times ranked 7882 citing authors

#	Article	IF	Citations
1	Hierarchical self-assembly of chiral rod-like molecules as a model for peptide Â-sheet tapes, ribbons, fibrils, and fibers. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11857-11862.	7.1	995
2	Responsive gels formed by the spontaneous self-assembly of peptides into polymeric \hat{l}^2 -sheet tapes. Nature, 1997, 386, 259-262.	27.8	860
3	Tube theory of entangled polymer dynamics. Advances in Physics, 2002, 51, 1379-1527.	14.4	798
4	Molecular constitutive equations for a class of branched polymers: The pom-pom polymer. Journal of Rheology, 1998, 42, 81-110.	2.6	720
5	Quantitative Theory for Linear Dynamics of Linear Entangled Polymers. Macromolecules, 2002, 35, 6332-6343.	4.8	569
6	Preparation of Hierarchical Hollow CaCO ₃ Particles and the Application as Anticancer Drug Carrier. Journal of the American Chemical Society, 2008, 130, 15808-15810.	13.7	431
7	Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. Journal of Rheology, 2003, 47, 1171-1200.	2.6	430
8	Parameter-Free Theory for Stress Relaxation in Star Polymer Melts. Macromolecules, 1997, 30, 2159-2166.	4.8	391
9	Nonlinear rheology of wormlike micelles. Physical Review Letters, 1993, 71, 939-942.	7.8	369
10	Spinodal-Assisted Crystallization in Polymer Melts. Physical Review Letters, 1998, 81, 373-376.	7.8	367
11	Dynamic dilution and the viscosity of star-polymer melts. Macromolecules, 1989, 22, 1911-1913.	4.8	329
12	Allostery in Its Many Disguises: From Theory to Applications. Structure, 2019, 27, 566-578.	3.3	285
13	Dynamics of Entangled H-Polymers:Â Theory, Rheology, and Neutron-Scattering. Macromolecules, 1999, 32, 6734-6758.	4.8	272
14	Computational linear rheology of general branch-on-branch polymers. Journal of Rheology, 2006, 50, 207-234.	2.6	217
15	Definitions of entanglement spacing and time constants in the tube model. Journal of Rheology, 2003, 47, 809-818.	2.6	216
16	A molecular approach to the spurt effect in polymer melt flow. Journal of Polymer Science, Part B: Polymer Physics, 1986, 24, 1735-1745.	2.1	213
17	Predicting low density polyethylene melt rheology in elongational and shear flows with "pom-pom― constitutive equations. Journal of Rheology, 1999, 43, 873-896.	2.6	206
18	Neutron-Mapping Polymer Flow: Scattering, Flow Visualization, and Molecular Theory. Science, 2003, 301, 1691-1695.	12.6	164

#	Article	lF	CITATIONS
19	Linking Models of Polymerization and Dynamics to Predict Branched Polymer Structure and Flow. Science, 2011, 333, 1871-1874.	12.6	162
20	CHEMISTRY: Polymers Without Beginning or End. Science, 2002, 297, 2005-2006.	12.6	156
21	The Rheology of Entangled Polymers at Very High Shear Rates. Europhysics Letters, 1993, 21, 451-456.	2.0	148
22	Molecular Rheology of Comb Polymer Melts. 1. Linear Viscoelastic Response. Macromolecules, 2001, 34, 7025-7033.	4.8	146
23	Microscopic theory of convective constraint release. Journal of Rheology, 2001, 45, 539-563.	2.6	139
24	Molecular drag–strain coupling in branched polymer melts. Journal of Rheology, 2000, 44, 121-136.	2.6	138
25	Dynamic Dilution, Constraint-Release, and Starâ'Linear Blends. Macromolecules, 1998, 31, 9345-9353.	4.8	134
26	Arm-Length Dependence of Stress Relaxation in Star Polymer Melts. Macromolecules, 1998, 31, 7479-7482.	4.8	116
27	Rheology of Three-Arm Asymmetric Star Polymer Melts. Macromolecules, 2002, 35, 4801-4820.	4.8	106
28	Viscoelasticity of Monodisperse Comb Polymer Melts. Macromolecules, 2006, 39, 4217-4227.	4.8	105
29	Molecular Rheology and Statistics of Long Chain Branched Metallocene-Catalyzed Polyolefins. Macromolecules, 2001, 34, 1928-1945.	4.8	95
30	Theoretical Molecular Rheology of Branched Polymers in Simple and Complex Flows: The Pom-Pom Model. Physical Review Letters, 1997, 79, 2352-2355.	7.8	92
31	Shear-Induced Crystallization in Blends of Model Linear and Long-Chain Branched Hydrogenated Polybutadienes. Macromolecules, 2006, 39, 5058-5071.	4.8	90
32	Elongational Flow of Blends of Long and Short Polymers: Effective Stretch Relaxation Time. Physical Review Letters, 2009, 103, 136001.	7.8	86
33	Topological Contributions to Nonlinear Elasticity in Branched Polymers. Physical Review Letters, 1996, 76, 2587-2590.	7.8	82
34	Hierarchical Relaxation in Tube Models of Branched Polymers. Europhysics Letters, 1988, 6, 511-516.	2.0	81
35	Theoretical Linear and Nonlinear Rheology of Symmetric Treelike Polymer Melts. Macromolecules, 2001, 34, 2579-2596.	4.8	79
36	Molecular rheology of H-polymers. Macromolecules, 1988, 21, 1062-1070.	4.8	75

#	Article	IF	CITATIONS
37	Rouse Model with Internal Friction:  A Coarse Grained Framework for Single Biopolymer Dynamics. Macromolecules, 2007, 40, 6770-6777.	4.8	73
38	Constriction flows of monodisperse linear entangled polymers: Multiscale modeling and flow visualization. Journal of Rheology, 2005, 49, 501-522.	2.6	72
39	Modulation of Global Low-Frequency Motions Underlies Allosteric Regulation: Demonstration in CRP/FNR Family Transcription Factors. PLoS Biology, 2013, 11, e1001651.	5.6	71
40	Phase Behavior of Linear/Branched Polymer Blends. Macromolecules, 1995, 28, 4650-4659.	4.8	70
41	Experimental observation and numerical simulation of transient "stress fangs―within flowing molten polyethylene. Journal of Rheology, 2001, 45, 1261-1277.	2.6	68
42	Floored by the rings. Nature Materials, 2008, 7, 933-935.	27.5	63
43	Structure and Dynamics of Self-Assembling \hat{l}^2 -Sheet Peptide Tapes by Dynamic Light Scattering. Biomacromolecules, 2001, 2, 378-388.	5.4	62
44	Stability of the interface between two dynamic phases in capillary flow of linear polymer melts. Journal of Polymer Science, Part B: Polymer Physics, 1987, 25, 2253-2264.	2.1	61
45	Microscopic Theory for the Fast Flow of Polymer Melts. Physical Review Letters, 2000, 85, 4550-4553.	7.8	60
46	Coarse-Grained Model Of Entropic Allostery. Physical Review Letters, 2004, 93, 098104.	7.8	60
47	Theory of surface light scattering from a fluid–fluid interface with adsorbed polymeric surfactants. Journal of Chemical Physics, 1998, 109, 5008-5024.	3.0	59
48	Allostery without conformation change: modelling protein dynamics at multiple scales. Physical Biology, 2013, 10, 056004.	1.8	59
49	Coupling of Global and Local Vibrational Modes in Dynamic Allostery of Proteins. Biophysical Journal, 2006, 91, 2055-2062.	0.5	58
50	Viscoelastic Properties of Single Polysaccharide Molecules Determined by Analysis of Thermally Driven Oscillations of an Atomic Force Microscope Cantilever. Langmuir, 2004, 20, 9299-9303.	3.5	57
51	Rheology and Molecular Weight Distribution of Hyperbranched Polymers. Macromolecules, 2002, 35, 9605-9612.	4.8	55
52	Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness. Science Advances, 2021, 7, eabh2929.	10.3	55
53	Entropy and Barrier-Controlled Fluctuations Determine Conformational Viscoelasticity of Single Biomolecules. Biophysical Journal, 2007, 92, 1825-1835.	0.5	52
54	Small Angle Neutron Scattering Observation of Chain Retraction after a Large Step Deformation. Physical Review Letters, 2005, 95, 166001.	7.8	50

#	Article	IF	CITATIONS
55	Measuring and Predicting the Dynamics of Linear Monodisperse Entangled Polymers in Rapid Flow through an Abrupt Contraction. A Small Angle Neutron Scattering Study. Macromolecules, 2006, 39, 2700-2709.	4.8	50
56	Synthesis, Temperature Gradient Interaction Chromatography, and Rheology of Entangled Styrene Comb Polymers. Macromolecules, 2008, 41, 5869-5875.	4.8	50
57	Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts. Journal of Rheology, 2014, 58, 969-997.	2.6	46
58	Viscoelastic Measurements of Single Molecules on a Millisecond Time Scale by Magnetically Driven Oscillation of an Atomic Force Microscope Cantilever. Langmuir, 2005, 21, 4765-4772.	3.5	44
59	"Molecular velcro": dynamics of a constrained chain into an elastomer network. Macromolecules, 1993, 26, 7322-7325.	4.8	43
60	Characterization of long chain branching: Dilution rheology of industrial polyethylenes. Journal of Rheology, 2002, 46, 401-426.	2.6	42
61	Rheology and Tube Model Theory of Bimodal Blends of Star Polymer Melts. Macromolecules, 1998, 31, 9295-9304.	4.8	41
62	Dynamic Transmission of Protein Allostery without Structural Change: Spatial Pathways or Global Modes?. Biophysical Journal, 2015, 109, 1240-1250.	0.5	41
63	The chevron folding instability in thermoplastic elastomers and other layered materials. Journal Physics D: Applied Physics, 1999, 32, 2087-2099.	2.8	40
64	Using the pom-pom equations to analyze polymer melts in exponential shear. Journal of Rheology, 2001, 45, 275-290.	2.6	40
65	Why, and when, does dynamic tube dilation work for stars?. Journal of Rheology, 2003, 47, 177-198.	2.6	38
66	Controlling the micellar morphology of binary PEO–PCL block copolymers in water–THF through controlled blending. Soft Matter, 2011, 7, 749-759.	2.7	37
67	The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein. Journal of Biological Chemistry, 2015, 290, 22225-22235.	3.4	37
68	Computational analysis of dynamic allostery and control in the SARS-CoV-2 main protease. Journal of the Royal Society Interface, 2021, 18, 20200591.	3.4	37
69	Internal friction of single polypeptide chains at high stretch. Faraday Discussions, 2008, 139, 35.	3.2	36
70	A tangled tale of topological fluids. Physics Today, 2008, 61, 40-45.	0.3	36
71	Numerical prediction of nonlinear rheology of branched polymer melts. Journal of Rheology, 2014, 58, 737-757.	2.6	36
72	Concentration Fluctuations in Surfactant Cubic Phases:Â Theory, Rheology, and Light Scattering. Langmuir, 1999, 15, 7495-7503.	3.5	35

#	Article	IF	CITATIONS
73	Bulk Spinodal Decomposition Studied by Atomic Force Microscopy and Light Scattering. Macromolecules, 2001, 34, 3748-3756.	4.8	35
74	Arm Relaxation in Deformed H-Polymers in Elongational Flow by SANS. Macromolecules, 2002, 35, 6650-6664.	4.8	35
75	Linear Melt Rheology and Small-Angle X-ray Scattering of AB Diblocks vs A2B2Four Arm Star Block Copolymers. Macromolecules, 2000, 33, 8399-8414.	4.8	34
76	Small-Angle Neutron Scattering Study of the Relaxation of a Melt of Polybutadiene H-Polymers Following a Large Step Strain. Macromolecules, 2004, 37, 5054-5064.	4.8	33
77	Dynamic allostery of protein alpha helical coiled-coils. Journal of the Royal Society Interface, 2006, 3, 125-138.	3.4	33
78	Stress Relaxation in Entangled Comb Polymer Melts. Macromolecules, 1994, 27, 7205-7211.	4.8	32
79	Anomalous Difference in the Orderâ^'Disorder Transition Temperature Comparing a Symmetric Diblock Copolymer AB with Its Hetero-Four-Arm Star Analog A2B2. Macromolecules, 1999, 32, 7483-7495.	4.8	31
80	Molecular Dynamics Simulation of Dextran Extension by Constant Force in Single Molecule AFM. Biophysical Journal, 2006, 91, 3579-3588.	0.5	31
81	Controlling the Self-Assembly of Binary Copolymer Mixtures in Solution through Molecular Architecture. Macromolecules, 2011, 44, 5510-5519.	4.8	31
82	"Lozenge" Contour Plots in Scattering from Polymer Networks. Physical Review Letters, 1997, 79, 87-90.	7.8	29
83	A Deuterium NMR Study of Selectively Labeled Polybutadiene Star Polymers. Macromolecules, 2000, 33, 7101-7106.	4.8	29
84	The effect of viscoelasticity on stress fields within polyethylene melt flow for a cross-slot and contraction–expansion slit geometry. Rheologica Acta, 2008, 47, 821-834.	2.4	29
85	Cross-slot extensional rheometry and the steady-state extensional response of long chain branched polymer melts. Journal of Rheology, 2011, 55, 875-900.	2.6	28
86	Statistical mechanics of convergent evolution in spatial patterning. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9564-9569.	7.1	27
87	Transient overshoot extensional rheology of long-chain branched polyethylenes: Experimental and numerical comparisons between filament stretching and cross-slot flow. Journal of Rheology, 2013, 57, 293-313.	2.6	27
88	Protein Folding in High-Dimensional Spaces: Hypergutters and the Role of Nonnative Interactions. Biophysical Journal, 2005, 88, 172-183.	0.5	26
89	Silk Protein Solution: A Natural Example of Sticky Reptation. Macromolecules, 2020, 53, 2669-2676.	4.8	26
90	Predicting the rheology of linear with branched polyethylene blends. Rheologica Acta, 1996, 35, 481-491.	2.4	25

#	Article	IF	CITATIONS
91	The long-chain dynamics in a model homopolymer blend under strong flow: small-angle neutron scattering and theory. Soft Matter, 2009, 5, 2383.	2.7	25
92	Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence. Interface Focus, 2015, 5, 20150041.	3.0	24
93	The dynamic structure factor of a star polymer in a concentrated solution. Macromolecules, 1993, 26, 5264-5266.	4.8	23
94	A theory for heterogeneous states of polymer melts produced by single chain crystal melting. Soft Matter, 2007, 3, 83-87.	2.7	23
95	Dynamic scaling in entangled mean-field gelation polymers. Physical Review E, 2006, 74, 011404.	2.1	21
96	Organisation of self-assembling peptide nanostructures into macroscopically ordered lamella-like layers by ice crystallisation. Soft Matter, 2009, 5, 1237.	2.7	21
97	î" î"PT: a comprehensive toolbox for the analysis of protein motion. BMC Bioinformatics, 2013, 14, 183.	2.6	21
98	Global low-frequency motions in protein allostery: CAP as a model system. Biophysical Reviews, 2015, 7, 175-182.	3.2	21
99	Substrate-Modulated Thermal Fluctuations Affect Long-Range Allosteric Signaling in Protein Homodimers: Exemplified in CAP. Biophysical Journal, 2010, 98, 2317-2326.	0.5	20
100	A three-dimensional color space from the 13th century. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A346.	1.5	20
101	Pressure and shear rate dependence of the viscosity and stress relaxation of polymer melts. Journal of Rheology, 2018, 62, 631-642.	2.6	20
102	Microscopic Theory for the "Lozenge―Contour Plots in Scattering from Stretched Polymer Networks. Macromolecules, 1997, 30, 6376-6384.	4.8	19
103	Shear modulus of polyelectrolyte gels under electric field. Journal of Physics Condensed Matter, 2001, 13, 1381-1393.	1.8	19
104	Synthesis, Hydrogenation, and Rheology of 1,2-Polybutadiene Star Polymers. Macromolecules, 2002, 35, 467-472.	4.8	19
105	Experimental observations and matching viscoelastic specific work predictions of flow-induced crystallization for molten polyethylene within two flow geometries. Journal of Rheology, 2009, 53, 859-876.	2.6	19
106	Theoretical prediction and experimental measurement of isothermal extrudate swell of monodisperse and bidisperse polystyrenes. Journal of Rheology, 2017, 61, 931-945.	2.6	19
107	The nonlinear response of entangled star polymers to startup of shear flow. Journal of Rheology, 2009, 53, 1193-1214.	2.6	18
108	Viscoelastic Properties of Single Poly(ethylene glycol) Molecules. ChemPhysChem, 2006, 7, 1710-1716.	2.1	17

#	Article	IF	CITATIONS
109	A coarseâ€grained molecular model of strainâ€hardening for polymers in the marginally glassy state. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 920-938.	2.1	17
110	Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes. Journal of the Royal Society Interface, 2014, 11, 20140706.	3.4	17
111	A Model for Defectâ^'Diffusion-Controlled Polymerization at a Surface as Typified by the Alkali-Metal Mediated Synthesis of Polysilanes. Macromolecules, 2002, 35, 548-554.	4.8	16
112	The â€~allosteron' model for entropic allostery of self-assembly. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170186.	4.0	16
113	Small-Angle Neutron Scattering from Peptide Nematic Fluids and Hydrogels under Shear. Langmuir, 2003, 19, 4940-4949.	3.5	15
114	Elasticity Dominated Surface Segregation of Small Molecules in Polymer Mixtures. Physical Review Letters, 2016, 116, 208301.	7.8	15
115	Evaluating interdisciplinary research: the elephant in the peer-reviewers $\hat{a} \in \mathbb{N}$ room. Palgrave Communications, 2016, 2, .	4.7	15
116	Entangled dynamics of healing end-grafted chains at a solid/polymer interface. Faraday Discussions, 1994, 98, 67.	3.2	14
117	Rheo-Optical Evidence of CCR in an Entangled Four-Arm Star. Macromolecules, 2005, 38, 1451-1455.	4.8	14
118	Allostery and molecular machines. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170173.	4.0	14
119	Linear rheological behaviour of polyisoprene–polystyrene hetero-star and linear diblock copolymer melts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2403-2409.	1.7	13
120	An investigation of the shape and crossover scaling of flexible tangent hard-sphere polymer chains by Monte Carlo simulation. Journal of Chemical Physics, 1999, 111, 416-428.	3.0	13
121	Polymer extrudate-swell: From monodisperse melts to polydispersity and flow-induced reduction in monomer friction. Journal of Rheology, 2019, 63, 319-333.	2.6	13
122	Effect of branching in cross-slot flow: the formation of "W cusps― Rheologica Acta, 2009, 48, 551-561.	2.4	12
123	Neutron flow-mapping: Multiscale modelling opens a new experimental window. Soft Matter, 2009, 5, 4426.	2.7	12
124	Micelle shape transitions in block copolymer/homopolymer blends: Comparison of self-consistent field theory with experiment. Journal of Chemical Physics, 2009, 131, 034904.	3.0	12
125	Color-coordinate system from a 13th-century account of rainbows. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A341.	1.5	12
126	Molecular physics of a polymer engineering instability: Experiments and computation. Physical Review E, 2008, 77, 050801.	2.1	11

#	Article	IF	CITATIONS
127	Morphology formation in binary mixtures upon gradual destabilisation. Soft Matter, 2019, 15, 8450-8458.	2.7	11
128	Tearing energy study of "oriented and relaxed―polystyrene in the glassy state. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 377-394.	2.1	9
129	Non-linear step strain of branched polymer melts. Journal of Rheology, 2009, 53, 917-942.	2.6	9
130	The effect of boundary curvature on the stress response of linear and branched polyethylenes in a contraction–expansion flow. Rheologica Acta, 2011, 50, 675-689.	2.4	9
131	Evolution as an Unwrapping of the Gift of Freedom. Scientia Et Fides, 2020, 8, 43.	0.7	9
132	New Dynamical Window onto the Landscape for Forced Protein Unfolding. Physical Review Letters, 2008, 101, 248104.	7.8	8
133	A medieval multiverse?: Mathematical modelling of the thirteenth century universe of Robert Grosseteste. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140025.	2.1	8
134	Controlled Synthesis, Characterization, and Flow Properties of Ethylene–Diene Copolymers. Macromolecular Reaction Engineering, 2019, 13, 1800071.	1.5	8
135	Stretching of Bombyx mori Silk Protein in Flow. Molecules, 2021, 26, 1663.	3.8	8
136	'Living trees': dynamics at a reversible classical gel point. Journal of Physics Condensed Matter, 1990, 2, 749-754.	1.8	7
137	Self-Assembling Peptide Gels. , 2006, , 99-130.		7
138	Emergence and topological order in classical and quantum systems. Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 2019, 66, 155-169.	1.4	7
139	Combining steady state and temperature jump IR spectroscopy to investigate the allosteric effects of ligand binding to dsDNA. Physical Chemistry Chemical Physics, 2021, 23, 15352-15363.	2.8	7
140	Fashioning Flow by Self-Assembly. Science, 1997, 278, 1577-1578.	12.6	6
141	Demixing Instability in Polymer Blends Undergoing Polycondensation Reactions. Macromolecules, 2000, 33, 3871-3878.	4.8	6
142	Molecular polymeric matter, Weissenberg, Astbury and the pleasure of being wrong. Rheologica Acta, 2008, 47, 479-489.	2.4	6
143	The Role of High-Dimensional Diffusive Search, Stabilization, and Frustration in Protein Folding. Biophysical Journal, 2014, 106, 1729-1740.	0.5	6
144	Securing the future of research computing in the biosciences. PLoS Computational Biology, 2019, 15, e1006958.	3.2	6

#	Article	IF	Citations
145	Read and McLeish Reply:. Physical Review Letters, 1998, 80, 5450-5450.	7.8	5
146	Closed-Loop Miscibility Gaps in Polymer Blends under Shear Flow. Macromolecules, 1999, 32, 4447-4449.	4.8	5
147	Chain Deformation in Entangled Polymer Melts at Re-entrant Corners. Macromolecules, 2010, 43, 1539-1542.	4.8	5
148	Soft Matter: A Very Short Introduction. , 2020, , .		5
149	Molecular Dynamics Simulation of Dextran Extension at Constant Pulling Speed. Macromolecular Symposia, 2006, 237, 81-89.	0.7	4
150	Demixing instability in coil-rod blends undergoing polycondensation reactions. Journal of Chemical Physics, 2007, 126, 074901.	3.0	4
151	Molecular Dynamics of Pectin Extension. Macromolecular Symposia, 2007, 252, 140-148.	0.7	4
152	Fluctuation power spectra reveal dynamical heterogeneity of peptides. Journal of Chemical Physics, 2010, 133, 015101.	3.0	4
153	Bow-shaped caustics from conical prisms: a 13th-century account of rainbow formation from Robert Grosseteste's De iride. Applied Optics, 2017, 56, G197.	1.8	4
154	THE REâ€DISCOVERY OF CONTEMPLATION THROUGH SCIENCE. Zygon, 2021, 56, 758-776.	0.4	4
155	Theoretical rheo-physics of silk: Intermolecular associations reduce the critical specific work for flow-induced crystallization. Journal of Rheology, 2022, 66, 515-534.	2.6	4
156	Soft condensed matter: where physics meets biology. Physics World, 2001, 14, 33-38.	0.0	3
157	Diffusive searches in high-dimensional spaces and apparent â€~two-state' behaviour in protein folding. Journal of Physics Condensed Matter, 2006, 18, 1861-1868.	1.8	3
158	Physics meets polymerisation chemistry: modelling the Wurtz reaction. Polymer International, 2009, 58, 239-241.	3.1	3
159	Power Law Stretching of Associating Polymers in Steady-State Extensional Flow. Physical Review Letters, 2021, 126, 057801.	7.8	3
160	All the colours of the rainbow. Nature Physics, 2014, 10, 540-542.	16.7	2
161	How proteins' negative cooperativity emerges from entropic optimisation of versatile collective fluctuations. Journal of Chemical Physics, 2019, 151, 215101.	3.0	2
162	New Molecular Mechanism of Dextran Extension in Single Molecule AFM. Lecture Notes in Computer Science, 2006, , 711-720.	1.3	2

#	Article	IF	CITATIONS
163	Scattering from deformed polymer networks. Journal of Chemical Physics, 1999, 111, 8196-8208.	3.0	1
164	Real Presences. Theology, 1999, 102, 169-177.	0.0	1
165	Mathematical Virology. Journal of Theoretical Medicine, 2005, 6, 67-68.	0.5	1
166	Listening between the lines: medieval and modern science. Palgrave Communications, 2016, 2, .	4.7	1
167	A meta-metaphor for science: the true and the fictional within the book of nature. Interdisciplinary Science Reviews, 2020, 45, 406-415.	1.4	1
168	Creativity, imagination and being in the image of God: a Précis of The Poetry and Music of Science. Interdisciplinary Science Reviews, 2020, 45, 1-7.	1.4	1
169	Taking the discussion onward. Interdisciplinary Science Reviews, 2020, 45, 51-70.	1.4	1
170	TOWARDS UNDERSTANDING ER FLUIDS USING SALS/RHEOMETRY. International Journal of Modern Physics B, 1996, 10, 3029-3036.	2.0	0
171	Introduction: statistical mechanics of molecular and cellular biological systems. Journal of the Royal Society Interface, 2006, 3, 123-124.	3.4	0
172	Measurement and Modelling of High Density Polyethylene Melt Extrudate Swell. AIP Conference Proceedings, 2008, , .	0.4	0
173	From Reactor to Rheology in LDPE Modeling. AIP Conference Proceedings, 2008, , .	0.4	0
174	Non-linear Step Strain of Branched Polymer Melts. AIP Conference Proceedings, 2008, , .	0.4	0
175	Rheological and Film-Casting Properties of Well-Characterised Polyethylenes with Different Branching Structure. AIP Conference Proceedings, 2008, , .	0.4	0
176	Neutron Flow-Mapping of Controlled-Architecture Polymer Melts. AIP Conference Proceedings, 2008, , .	0.4	0
177	Hidden Dynamics in Nanophase Segregated Tri-Pentablocks Copolymers Melt. AIP Conference Proceedings, 2008, , .	0.4	0
178	Physics met biology, and the consequence was…. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2011, 42, 190-192.	1.3	0
179	Soft matter's charismatic pioneer. Physics World, 2012, 25, 57-58.	0.0	0
180	Multi-scale Approaches to Dynamical Transmission of Protein Allostery. , 2015, , 141-152.		0

#	Article	IF	CITATIONS
181	Lucifer's legacy: the meaning of asymmetry. Laterality, 2018, 23, 252-253.	1.0	0
182	Ligand-regulated oligomerisation of allosterically interacting proteins. Soft Matter, 2018, 14, 6961-6968.	2.7	0
183	RESPONSE TO BOYLE LECTURE 2021 PANEL AND PARTICIPANT DISCUSSION. Zygon, 2021, 56, 786-803.	0.4	O
184	Physics of Brains. IScience, 2021, 24, 102877.	4.1	0
185	Chain-stretch relaxation from low-frequency Fourier transform rheology. Physical Review Research, 2020, 2, .	3.6	0