Jim Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365159/publications.pdf

Version: 2024-02-01

16451 16650 18,038 292 64 123 citations h-index g-index papers 322 322 322 17245 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1786-1793.	7.1	2,599
2	Meat consumption, health, and the environment. Science, 2018, 361, .	12.6	1,031
3	Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 2016, 79, 214-232.	4.5	926
4	Managing nitrogen to restore water quality in China. Nature, 2019, 567, 516-520.	27.8	667
5	Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 2019, 654, 811-821.	8.0	387
6	Infrastructure for sustainable development. Nature Sustainability, 2019, 2, 324-331.	23.7	371
7	Fluvial flood risk management in a changing world. Natural Hazards and Earth System Sciences, 2010, 10, 509-527.	3.6	334
8	Integrating human behaviour dynamics into flood disaster risk assessment. Nature Climate Change, 2018, 8, 193-199.	18.8	327
9	Imprecise probability assessment of tipping points in the climate system. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5041-5046.	7.1	263
10	Pollution exacerbates China's water scarcity and its regional inequality. Nature Communications, 2020, 11, 650.	12.8	260
11	Robust Climate Policies Under Uncertainty: A Comparison of Robust Decision Making and Infoâ€Gap Methods. Risk Analysis, 2012, 32, 1657-1672.	2.7	221
12	National-scale Assessment of Current and Future Flood Risk in England and Wales. Natural Hazards, 2005, 36, 147-164.	3.4	218
13	The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resources Research, 2015, 51, 6110-6124.	4.2	214
14	A global multi-hazard risk analysis of road and railway infrastructure assets. Nature Communications, 2019, 10, 2677.	12.8	213
15	Distributed Sensitivity Analysis of Flood Inundation Model Calibration. Journal of Hydraulic Engineering, 2005, 131, 117-126.	1.5	212
16	Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change. Climatic Change, 2009, 95, 249-288.	3.6	205
17	The energy-water-food nexus: Strategic analysis of technologies for transforming the urban metabolism. Journal of Environmental Management, 2014, 141, 104-115.	7.8	198
18	Simplified two-dimensional numerical modelling of coastal flooding and example applications. Coastal Engineering, 2005, 52, 793-810.	4.0	187

#	Article	IF	Citations
19	A restatement of the natural science evidence concerning catchment-based †natural' flood management in the UK. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160706.	2.1	184
20	A predictive Mesoscale model of the erosion and profile development of soft rock shores. Coastal Engineering, 2005, 52, 535-563.	4.0	183
21	Systemic impacts of climate change on an eroding coastal region over the twenty-first century. Climatic Change, 2007, 84, 141-166.	3.6	163
22	Assessing the effectiveness of non-structural flood management measures in the Thames Estuary under conditions of socio-economic and environmental change. Global Environmental Change, 2011, 21, 628-646.	7.8	161
23	A methodology for national-scale flood risk assessment. Proceedings of the Institution of Civil Engineers Water and Maritime Engineering, 2003, 156, 235-247.	0.3	158
24	Coping with the curse of freshwater variability. Science, 2014, 346, 429-430.	12.6	155
25	A framework for uncertainty analysis in flood risk management decisions. International Journal of River Basin Management, 2008, 6, 85-98.	2.7	151
26	Electricity generation and cooling water use: UK pathways to 2050. Global Environmental Change, 2014, 25, 16-30.	7.8	151
27	Integrated Flood Risk Management in England and Wales. Natural Hazards Review, 2003, 4, 126-135.	1.5	148
28	Valuing water for sustainable development. Science, 2017, 358, 1003-1005.	12.6	136
28	Valuing water for sustainable development. Science, 2017, 358, 1003-1005. Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 2020, 10, 54-57.	12.6	136
29	Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 2020, 10, 54-57. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water International, 2016, 41,	18.8	132
30	Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 2020, 10, 54-57. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water International, 2016, 41, 611-634. Towards risk-based flood hazard management in the UK. Proceedings of the Institution of Civil	18.8	132 127
30 31	Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 2020, 10, 54-57. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water International, 2016, 41, 611-634. Towards risk-based flood hazard management in the UK. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2002, 150, 36-42. The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy,	18.8 1.0 0.3	132 127 121
29 30 31 32	Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 2020, 10, 54-57. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water International, 2016, 41, 611-634. Towards risk-based flood hazard management in the UK. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2002, 150, 36-42. The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy, 2020, 99, 104868. Assessing surface water flood risk and management strategies under future climate change: Insights	18.8 1.0 0.3 5.6	132 127 121 116
30 31 32 33	Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 2020, 10, 54-57. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water International, 2016, 41, 611-634. Towards risk-based flood hazard management in the UK. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2002, 150, 36-42. The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy, 2020, 99, 104868. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Science of the Total Environment, 2017, 595, 159-168.	18.8 1.0 0.3 5.6	132 127 121 116

#	Article	IF	Citations
37	Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 2018, 11, 22-33.	3.3	99
38	Attribution of flood risk in urban areas. Journal of Hydroinformatics, 2008, 10, 275-288.	2.4	98
39	Coastal cliff recession: the use of probabilistic prediction methods. Geomorphology, 2001, 40, 253-269.	2.6	91
40	Stochastic simulation of episodic soft coastal cliff recession. Coastal Engineering, 2002, 46, 159-174.	4.0	91
41	Riskâ€based water resources planning: Incorporating probabilistic nonstationary climate uncertainties. Water Resources Research, 2014, 50, 6850-6873.	4.2	90
42	Probabilistic climate scenarios may misrepresent uncertainty and lead to bad adaptation decisions. Hydrological Processes, 2007, 21, 1127-1129.	2.6	87
43	Participatory planning of the future of waste management in small island developing states to deliver on the Sustainable Development Goals. Journal of Cleaner Production, 2019, 223, 147-162.	9.3	87
44	Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nature Communications, 2020, 11 , 5222 .	12.8	87
45	Operationalizing the net-negative carbon economy. Nature, 2021, 596, 377-383.	27.8	87
46	The Economic Impacts of Droughts: A Framework for Analysis. Ecological Economics, 2017, 132, 196-204.	5.7	86
47	Global economic impacts of COVID-19 lockdown measures stand out in high-frequency shipping data. PLoS ONE, 2021, 16, e0248818.	2.5	83
48	A 2D shallow flow model for practical dam-break simulations. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 307-316.	1.7	82
49	Delivering on the Sustainable Development Goals through long-term infrastructure planning. Global Environmental Change, 2019, 59, 101975.	7.8	80
50	Predicting spatial and temporal variability in crop yields: an inter-comparison of machine learning, regression and process-based models. Environmental Research Letters, 2020, 15, 044027.	5.2	79
51	Sensitivity Analysis for Hydraulic Models. Journal of Hydraulic Engineering, 2009, 135, 959-969.	1.5	78
52	Risk-based principles for defining and managing water security. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120407.	3.4	78
53	Risk, Robustness and Water Resources Planning Under Uncertainty. Earth's Future, 2018, 6, 468-487.	6.3	77
54	Using probabilistic climate change information from a multimodel ensemble for water resources assessment. Water Resources Research, 2009, 45, .	4.2	76

#	Article	IF	CITATIONS
55	Have coastal embankments reduced flooding in Bangladesh?. Science of the Total Environment, 2019, 682, 405-416.	8.0	76
56	Port disruptions due to natural disasters: Insights into port and logistics resilience. Transportation Research, Part D: Transport and Environment, 2020, 85, 102393.	6.8	76
57	Uncertain inference using interval probability theory. International Journal of Approximate Reasoning, 1998, 19, 247-264.	3.3	74
58	Sampling-based flood risk analysis for fluvial dike systems. Stochastic Environmental Research and Risk Assessment, 2005, 19, 388-402.	4.0	73
59	Flood Inundation Modeling with an Adaptive Quadtree Grid Shallow Water Equation Solver. Journal of Hydraulic Engineering, 2008, 134, 1603-1610.	1.5	73
60	Proportionate adaptation. Nature Climate Change, 2012, 2, 833-834.	18.8	72
61	Assessing the Impacts of Extreme Agricultural Droughts in China Under Climate and Socioeconomic Changes. Earth's Future, 2018, 6, 689-703.	6.3	72
62	Observed impacts of the COVID-19 pandemic on global trade. Nature Human Behaviour, 2021, 5, 305-307.	12.0	71
63	Quantified Analysis of the Probability of Flooding in the Thames Estuary under Imaginable Worst-case Sea Level Rise Scenarios. International Journal of Water Resources Development, 2005, 21, 577-591.	2.0	67
64	Quantified scenarios analysis of drivers and impacts of changing flood risk in England and Wales: 2030?2100. Environmental Hazards, 2003, 5, 51-65.	0.3	66
65	Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit. Water Resources Research, 2015, 51, 8927-8948.	4.2	66
66	Towards riskâ€based water resources planning in England and Wales under a changing climate. Water and Environment Journal, 2012, 26, 118-129.	2.2	65
67	System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures. Reliability Engineering and System Safety, 2017, 167, 30-41.	8.9	65
68	Generation, combination and extension of random set approximations to coherent lower and upper probabilities. Reliability Engineering and System Safety, 2004, 85, 89-101.	8.9	64
69	Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming. Agricultural Systems, 2019, 175, 34-45.	6.1	64
70	Plausible responses to the threat of rapid sea-level rise in the Thames Estuary. Climatic Change, 2008, 91, 145-169.	3.6	63
71	Handling uncertainty in the hydroinformatic process. Journal of Hydroinformatics, 2003, 5, 215-232.	2.4	60
72	Adaptive importance sampling for risk analysis of complex infrastructure systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 3343-3362.	2.1	59

#	Article	IF	CITATIONS
73	Water security, risk, and economic growth: Insights from a dynamical systems model. Water Resources Research, 2017, 53, 6425-6438.	4.2	59
74	Categorising virtual water transfers through China's electric power sector. Applied Energy, 2018, 226, 252-260.	10.1	58
75	A Mesoscale Predictive Model of the Evolution and Management of a Soft-Rock Coast. Journal of Coastal Research, 2011, 27, 529-543.	0.3	57
76	Enhanced efficiency of pluvial flood risk estimation in urban areas using spatial–temporal rainfall simulations. Journal of Flood Risk Management, 2012, 5, 143-152.	3.3	57
77	Uncertainty-based sensitivity indices for imprecise probability distributions. Reliability Engineering and System Safety, 2006, 91, 1443-1451.	8.9	56
78	Exploring Cooperative Transboundary River Management Strategies for the Eastern Nile Basin. Water Resources Research, 2018, 54, 9224-9254.	4.2	56
79	Information gap analysis of flood model uncertainties and regional frequency analysis. Water Resources Research, 2010, 46, .	4.2	54
80	A large set of potential past, present and future hydro-meteorological time series for the UK. Hydrology and Earth System Sciences, 2018, 22, 611-634.	4.9	54
81	Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nature Communications, 2020, 11 , 2239.	12.8	53
82	Impacts of climate change on coastal flood risk in England and Wales: 2030–2100. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1027-1049.	3.4	52
83	A software-supported process for assembling evidence and handling uncertainty in decision-making. Decision Support Systems, 2003, 35, 415-433.	5.9	51
84	Numerical rivers: A synthetic streamflow generator for water resources vulnerability assessments. Water Resources Research, 2015, 51, 5382-5405.	4.2	50
85	Probabilistic spatial risk assessment of heat impacts and adaptations for London. Climatic Change, 2014, 124, 105-117.	3.6	49
86	Variance-based sensitivity analysis of the probability of hydrologically induced slope instability. Computers and Geosciences, 2006, 32, 803-817.	4.2	46
87	Bayesian calibration of a flood inundation model using spatial data. Water Resources Research, 2011, 47, .	4.2	46
88	Tradingâ€off tolerable risk with climate change adaptation costs in water supply systems. Water Resources Research, 2016, 52, 622-643.	4.2	46
89	A systems framework for national assessment of climate risks to infrastructure. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170298.	3.4	46
90	Advances in flood risk management under uncertainty. Stochastic Environmental Research and Risk Assessment, 2005, 19, 375-377.	4.0	45

#	Article	IF	Citations
91	Responding to Global Challenges in Food, Energy, Environment and Water: Risks and Options Assessment for Decisionâ€Making. Asia and the Pacific Policy Studies, 2016, 3, 275-299.	1.5	45
92	Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas. Natural Hazards and Earth System Sciences, 2018, 18, 2741-2768.	3.6	45
93	Geomorphic change in the Ganges–Brahmaputra–Meghna delta. Nature Reviews Earth & Environment, 2021, 2, 763-780.	29.7	45
94	Imprecise probabilities of climate change: aggregation of fuzzy scenarios and model uncertainties. Climatic Change, 2007, 81, 265-281.	3.6	44
95	Uncertainty analysis in a slope hydrology and stability model using probabilistic and imprecise information. Computers and Geotechnics, 2004, 31, 529-536.	4.7	43
96	Future flood risk management in the UK. Water Management, 2006, 159, 53-61.	1.2	43
97	Adaptation pathways in practice: Mapping options and trade-offs for London's water resources. Sustainable Cities and Society, 2016, 27, 386-397.	10.4	43
98	A Probabilistic Model of the Economic Risk to Britain's Railway Network from Bridge Scour During Floods. Risk Analysis, 2019, 39, 2457-2478.	2.7	43
99	Renewable energy and household economy in rural China. Renewable Energy, 2020, 155, 669-676.	8.9	43
100	Infrastructure as a Complex Adaptive System. Complexity, 2018, 2018, 1-11.	1.6	42
101	The potential of Tidal River Management for flood alleviation in South Western Bangladesh. Science of the Total Environment, 2020, 731, 138747.	8.0	41
102	An Agent-Based Model of Flood Risk and Insurance. Jasss, 2017, 20, .	1.8	41
103	Decision Analysis for Management of Natural Hazards. Annual Review of Environment and Resources, 2016, 41, 489-516.	13.4	40
104	Assessment of climate change mitigation and adaptation in cities. Proceedings of the Institution of Civil Engineers: Urban Design and Planning, 2011, 164, 75-84.	0.7	39
105	Experiences of integrated assessment of climate impacts, adaptation and mitigation modelling in London and Durban. Environment and Urbanization, 2013, 25, 361-380.	2.6	39
106	Water and climate risks to power generation with carbon capture and storage. Environmental Research Letters, 2016, 11, 024011.	5.2	39
107	Adaptation thresholds and pathways for tidal flood risk management in London. Climate Risk Management, 2019, 24, 42-58.	3.2	39
108	A high-resolution spatio-temporal energy demand simulation to explore the potential of heating demand side management with large-scale heat pump diffusion. Applied Energy, 2019, 236, 997-1010.	10.1	39

#	Article	IF	Citations
109	Epistemic uncertainties and natural hazard risk assessment – PartÂ2: What should constitute good practice?. Natural Hazards and Earth System Sciences, 2018, 18, 2769-2783.	3.6	37
110	A methodology for national-scale flood risk assessment. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2003, 156, 235-247.	0.2	37
111	An evaluation of thermal Earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric. International Journal of Remote Sensing, 2013, 34, 864-884.	2.9	35
112	The role of storage capacity in coping with intra- and inter-annual water variability in large river basins. Environmental Research Letters, 2015, 10, 125001.	5.2	34
113	Dependency of Crop Production between Global Breadbaskets: A Copula Approach for the Assessment of Global and Regional Risk Pools. Risk Analysis, 2017, 37, 2212-2228.	2.7	34
114	Development and appraisal of long-term adaptation pathways for managing heat-risk in London. Climate Risk Management, 2017, 16, 73-92.	3.2	34
115	Understanding Business Disruption and Economic Losses Due to Electricity Failures and Flooding. International Journal of Disaster Risk Science, 2019, 10, 421-438.	2.9	32
116	Time-dependent reliability analysis of flood defences. Reliability Engineering and System Safety, 2009, 94, 1942-1953.	8.9	31
117	Real Options Analysis of Adaptation to Changing Flood Risk: Structural and Nonstructural Measures. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3, .	1.7	31
118	Identifying key technology and policy strategies for sustainable cities: A case study of London. Environmental Development, 2017, 21, 1-18.	4.1	31
119	The Spatial Dynamics of Droughts and Water Scarcity in England and Wales. Water Resources Research, 2020, 56, e2020WR027187.	4.2	31
120	Targeting climate adaptation to safeguard and advance the Sustainable Development Goals. Nature Communications, 2022, 13 , .	12.8	31
121	The delusive accuracy of global irrigation water withdrawal estimates. Nature Communications, 2022, 13, .	12.8	30
122	Decision tree for choosing an uncertainty analysis methodology: a wiki experiment. Hydrological Processes, 2006, 20, 3793-3798.	2.6	29
123	Energy system impacts from heat and transport electrification. Proceedings of Institution of Civil Engineers: Energy, 2014, 167, 139-151.	0.6	29
124	Stochastic Counterfactual Risk Analysis for the Vulnerability Assessment of Cyberâ€Physical Attacks on Electricity Distribution Infrastructure Networks. Risk Analysis, 2019, 39, 2012-2031.	2.7	29
125	Assessing the Long-Term Performance of Cross-Sectoral Strategies for National Infrastructure. Journal of Infrastructure Systems, 2014, 20, 04014014.	1.8	28
126	A multi-scale urban integrated assessment framework for climate change studies: A flooding application. Computers, Environment and Urban Systems, 2019, 75, 229-243.	7.1	28

#	Article	IF	Citations
127	Contrasting development trajectories for coastal Bangladesh to the end of century. Regional Environmental Change, 2020, 20, 1.	2.9	28
128	Coastal landslide activity: a probabilistic simulation model. Bulletin of Engineering Geology and the Environment, 2002, 61, 347-355.	3.5	27
129	The Tyndall coastal simulator. Journal of Coastal Conservation, 2011, 15, 325-335.	1.6	27
130	Systems-of-systems analysis of national infrastructure. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 249-257.	0.7	27
131	Policy choices can help keep 4G and 5G universal broadband affordable. Technological Forecasting and Social Change, 2022, 176, 121409.	11.6	27
132	Handling uncertainty in extreme or unrepeatable hydrological processes? the need for an alternative paradigm. Hydrological Processes, 2002, 16, 1867-1870.	2.6	26
133	Asset-management strategies for infrastructure embankments. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2009, 162, 111-120.	0.7	26
134	Implications of climate change for thermal discomfort on underground railways. Transportation Research, Part D: Transport and Environment, 2014, 30, 1-9.	6.8	26
135	Creating an ensemble of future strategies for national infrastructure provision. Futures, 2015, 66, 13-24.	2.5	26
136	Geographic Hotspots of Critical National Infrastructure. Risk Analysis, 2017, 37, 2490-2505.	2.7	26
137	Avoiding the water-poverty trap: insights from a conceptual human-water dynamical model for coastal Bangladesh. International Journal of Water Resources Development, 2018, 34, 900-922.	2.0	26
138	Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks. Risk Analysis, 2018, 38, 134-150.	2.7	26
139	The role of infrastructure in macroeconomic growth theories. Civil Engineering and Environmental Systems, 2013, 30, 263-273.	0.9	25
140	Assessment of Risks to Public Water Supply From Low Flows and Harmful Water Quality in a Changing Climate. Water Resources Research, 2019, 55, 10386-10404.	4.2	25
141	Influence Diagrams for Representing Uncertainty in Climate-Related Propositions. Climatic Change, 2005, 69, 343-365.	3.6	24
142	Climate Scenarios and Decision Making under Uncertainty. Built Environment, 2007, 33, 10-30.	0.8	24
143	Water â€" and nutrient and energy â€" systems in urbanizing watersheds. Frontiers of Environmental Science and Engineering, 2012, 6, 596-611.	6.0	24
144	Riskâ€based water resources planning in practice: a blueprint for the water industry in England. Water and Environment Journal, 2020, 34, 441-454.	2,2	24

#	Article	IF	Citations
145	A decision-support methodology for performance-based asset management. Civil Engineering and Environmental Systems, 2004, 21, 51-75.	0.9	23
146	The spatial exposure of the Chinese infrastructure system to flooding and drought hazards. Natural Hazards, 2016, 80, 1083-1118.	3.4	23
147	A Quantified System-of-Systems Modeling Framework for Robust National Infrastructure Planning. IEEE Systems Journal, 2016, 10, 385-396.	4.6	23
148	A positivity-preserving zero-inertia model for flood simulation. Computers and Fluids, 2011, 46, 505-511.	2.5	22
149	Computational decision analysis for flood risk management in an uncertain future. Journal of Hydroinformatics, 2012, 14, 537-561.	2.4	22
150	Longâ€Term Changes in Global Socioeconomic Benefits of Flood Defenses and Residual Risk Based on CMIP5 Climate Models. Earth's Future, 2018, 6, 938-954.	6.3	22
151	Can we calculate drought risk… and do we need to?. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1349.	6.5	22
152	Spatial analysis of the reliability of transport networks subject to rainfallâ€induced landslides. Hydrological Processes, 2008, 22, 3349-3360.	2.6	21
153	Robust decision-making under uncertainty – towards adaptive and resilient flood risk management infrastructure. , 2012, , 281-302.		21
154	A transient stochastic weather generator incorporating climate model uncertainty. Advances in Water Resources, 2015, 85, 14-26.	3.8	21
155	Random sets of probability measures in slope hydrology and stability analysis. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2004, 84, 710-720.	1.6	20
156	Re-engineering cities as forces for good in the environment. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2010, 163, 31-46.	0.7	20
157	iCOASST – INTEGRATING COASTAL SEDIMENT SYSTEMS. Coastal Engineering Proceedings, 2012, 1, 100.	0.1	20
158	On not undermining the science: coherence, validation and expertise. Discussion of Invited Commentary by Keith Beven Hydrological Processes, 20, 3141–3146 (2006). Hydrological Processes, 2007, 21, 985-988.	2.6	19
159	Resilience of Water Resource Systems: Lessons from England. Water Security, 2019, 8, 100052.	2.5	19
160	The myriad challenges of the Paris Agreement. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20180066.	3.4	18
161	The implications of ambitious decarbonisation of heat and road transport for Britain's net zero carbon energy systems. Applied Energy, 2022, 305, 117905.	10.1	18
162	Causal Loop Analysis of coastal geomorphological systems. Geomorphology, 2016, 256, 36-48.	2.6	17

#	Article	IF	Citations
163	Strategic analysis of the future of national infrastructure. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2017, 170, 39-47.	0.3	17
164	Coastal Modelling Environment version 1.0: aÂframework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts. Geoscientific Model Development, 2017, 10, 2715-2740.	3.6	17
165	Analysis of the relationship between rainfall and economic growth in Indian states. Global Environmental Change, 2018, 49, 56-72.	7.8	17
166	A Probabilistic Analysis of Surface Water Flood Risk in London. Risk Analysis, 2018, 38, 1169-1182.	2.7	17
167	How weather affects energy demand variability in the transition towards sustainable heating. Energy, 2020, 195, 116947.	8.8	17
168	Geospatial multi-criteria analysis for identifying optimum wind and solar sites in Africa: Towards effective power sector decarbonization. Renewable and Sustainable Energy Reviews, 2022, 158, 112107.	16.4	17
169	Fusion of expert and learnt knowledge in a framework of fuzzy labels. International Journal of Approximate Reasoning, 2004, 36, 151-198.	3.3	16
170	A systemic risk framework to improve the resilience of port and supply-chain networks to natural hazards. Maritime Economics and Logistics, 2022, 24, 489-506.	4.0	16
171	Risk-based benefit assessment of coastal cliff protection. Proceedings of the Institution of Civil Engineers Water and Maritime Engineering, 2000, 142, 127-139.	0.3	15
172	Feedback structure of cliff and shore platform morphodynamics. Journal of Coastal Conservation, 2015, 19, 847-859.	1.6	15
173	A multiâ€scale framework for flood risk analysis at spatially distributed locations. Journal of Flood Risk Management, 2017, 10, 124-137.	3.3	15
174	Water Stress and Productivity: An Empirical Analysis of Trends and Drivers. Water Resources Research, 2020, 56, e2019WR025925.	4.2	15
175	Relation between Dislocation Density and Catalytic Activity and Effects of Physical Treatment. Industrial & Engineering Chemistry Fundamentals, 1964, 3, 158-167.	0.7	14
176	A framework for longâ€term scenario analysis in the <scp>T</scp> aihu <scp>B</scp> asin, <scp>C</scp> hina. Journal of Flood Risk Management, 2013, 6, 3-13.	3.3	14
177	The Resilience of Inter-basin Transfers to Severe Droughts With Changing Spatial Characteristics. Frontiers in Environmental Science, 2020, 8, .	3.3	14
178	The unequal distribution of water risks and adaptation benefits in coastal Bangladesh. Nature Sustainability, 2022, 5, 294-302.	23.7	14
179	Broad scale quantified flood risk analysis in the Taihu Basin, China. Journal of Flood Risk Management, 2013, 6, 57-68.	3.3	13
180	Drivers of water use in China's electric power sector from 2000 to 2015. Environmental Research Letters, 2018, 13, 094010.	5.2	13

#	Article	IF	CITATIONS
181	Socioâ€Hydrology in Perspective—Circa 2018. Water Resources Research, 2019, 55, 1776-1777.	4.2	13
182	Fuzzy label methods for constructing imprecise limit state functions. Structural Safety, 2003, 25, 317-341.	5. 3	12
183	A GIS-supported impact assessment of the hierarchical flood-defense systems on the plain areas of the Taihu Basin, China. International Journal of Geographical Information Science, 2012, 26, 643-665.	4.8	12
184	The strategic national infrastructure assessment of digital communications. Digital Policy, Regulation and Governance, 2018, 20, 197-210.	1.6	12
185	A Linear Programming Approach to Water Allocation during a Drought. Water (Switzerland), 2018, 10, 363.	2.7	12
186	Multi-Scale Assessment of the Economic Impacts of Flooding: Evidence from Firm to Macro-Level Analysis in the Chinese Manufacturing Sector. Sustainability, 2019, 11, 1933.	3.2	12
187	An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK. Water (Switzerland), 2020, 12, 225.	2.7	12
188	An Integrated Framework for Riskâ€Based Analysis of Economic Impacts of Drought and Water Scarcity in England and Wales. Water Resources Research, 2021, 57, e2020WR027715.	4.2	12
189	Assessing water security across scales: A case study of the United States. Applied Geography, 2021, 134, 102500.	3.7	12
190	A Scenario-Based Framework for Assessing the Economic Impacts of Potential Droughts. Water Economics and Policy, 2017, 03, 1750007.	1.0	11
191	A systems-based assessment of Palestine's current and future infrastructure requirements. Journal of Environmental Management, 2019, 234, 200-213.	7.8	11
192	Optimizing Rural Drinking Water Supply Infrastructure to Account for Spatial Variations in Groundwater Quality and Household Welfare in Coastal Bangladesh. Water Resources Research, 2021, 57, e2021WR029621.	4.2	11
193	Flood Risk Management: Decision Making Under Uncertainty. , 2014, , 3-24.		10
194	Navigating the water trilemma: a strategic assessment of longâ€term national water resource management options for Great Britain. Water and Environment Journal, 2018, 32, 546-555.	2.2	10
195	Where is the Planetary Boundary for freshwater being exceeded because of livestock farming?. Science of the Total Environment, 2021, 760, 144035.	8.0	10
196	Carbonaceous Deposits on Silica-Alumina Catalyst. Industrial & Engineering Chemistry Process Design and Development, 1963, 2, 25-30.	0.6	9
197	Editorial: steps towards global flood risk modelling. Journal of Flood Risk Management, 2014, 7, 193-194.	3.3	9
198	Responding to adaptation emergencies. Nature Climate Change, 2015, 5, 6-7.	18.8	9

#	Article	IF	CITATIONS
199	Infrastructure Strategies for Achieving the Global Development Agendas in Small Islands. Earth's Future, 2021, 9, e2020EF001699.	6.3	9
200	Vulnerability of London's Economy to Climate Change: Sensitivity to Production Loss. Journal of Environmental Protection, 2013, 04, 548-563.	0.7	9
201	Software-supported risk management for the construction industry. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2001, 144, 42-48.	0.3	8
202	Techniques for valuing adaptive capacity in flood risk management. Water Management, 2016, 169, 75-84.	1.2	8
203	Multi-objective optimization of energy and greenhouse gas emissions in water pumping and treatment. Water Science and Technology, 2020, 82, 2745-2760.	2.5	8
204	Tackling the Trickle: Ensuring Sustainable Water Management in the Arab Region. Earth's Future, 2020, 8, e2020EF001495.	6.3	8
205	RESPONSE OF MARINE CLIMATE TO FUTURE CLIMATE CHANGE: APPLICATION TO COASTAL REGIONS. , 2009, , .		8
206	Impacts of Droughts and Acidic Deposition on Long-Term Surface Water Dissolved Organic Carbon Concentrations in Upland Catchments in Wales. Frontiers in Environmental Science, 0, 8, .	3.3	8
207	Improved condition characterisation of coastal defences. , 2002, , 123-134.		7
208	COMBINATION METHODS AND CONFLICT HANDLING IN EVIDENTIAL THEORIES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2008, 16, 337-369.	1.9	7
209	Journal of Flood Risk Management. Journal of Flood Risk Management, 2010, 3, 1-2.	3.3	7
210	A changing climate for insurance. Nature Climate Change, 2011, 1, 248-250.	18.8	7
211	Cooling water for Britain's future electricity supply. Proceedings of Institution of Civil Engineers: Energy, 2015, 168, 188-204.	0.6	7
212	A dynamic agricultural prediction system for large-scale drought assessment on the Sunway TaihuLight supercomputer. Computers and Electronics in Agriculture, 2018, 154, 400-410.	7.7	7
213	A diagnostic dashboard to evaluate country water security. Water Policy, 2020, 22, 825-849.	1.5	7
214	The utility of built environment geospatial data for high-resolution dasymetric global population modeling. Computers, Environment and Urban Systems, 2021, 86, 101594.	7.1	7
215	Selecting Indicators and Optimizing Decision Rules for Longâ€√erm Water Resources Planning. Water Resources Research, 2021, 57, e2020WR028117.	4.2	7
216	Informing national adaptation for sustainable development through spatial systems modelling. Global Environmental Change, 2021, 71, 102396.	7.8	7

#	Article	IF	Citations
217	Earth systems engineering: turning vision into action. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2007, 160, 114-122.	0.3	6
218	Uncertainty and sensitivity analysis of flood risk management decisions based on stationary and nonstationary model choices. E3S Web of Conferences, 2016, 7, 20003.	0.5	6
219	Electricity systems capacity expansion under cooling water availability constraints. IET Energy Systems Integration, 2019, 1, 23-33.	1.8	6
220	A CONTINGENCY APPROACH TO CHOICE. Civil Engineering and Environmental Systems, 2002, 19, 87-118.	0.9	5
221	Managing changing risks to infrastructure systems. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2006, 159, 21-27.	0.3	5
222	A systems view of climate change. Civil Engineering and Environmental Systems, 2010, 27, 243-253.	0.9	5
223	Computing flood risk in areas protected by flood defences. Water Management, 2014, 167, 38-50.	1.2	5
224	Water shortage risks for China's coal power plants under climate change. Environmental Research Letters, 2021, 16, 044011.	5.2	5
225	Comment on â€~Of data and models'. Journal of Hydroinformatics, 2004, 6, 75-77.	2.4	4
226	Numerical Modelling of Potential Climate-Change Impacts on Rates of Soft-Cliff Recession, Northeast Norfolk, UK. , 2006, , $1.$		4
227	Assessing impacts and responses to global-mean sea-level rise. , 2007, , 119-134.		4
228	Reframe: A software system supporting flood risk analysis. International Journal of River Basin Management, 2008, 6, 163-174.	2.7	4
229	From flood science to flood policy: the Foresight Future Flooding project seven years on. Foresight, 2013, 15, 190-210.	2.1	4
230	A National Model for Strategic Planning of Infrastructure Systems. , 2014, , .		4
231	Characterizing the Vulnerability of Future Configurations of Great Britain's Electricity Network Infrastructure to Climate-related Hazards. , 2014, , .		4
232	Spatial Risk Analysis of Interdependent Infrastructures Subjected to Extreme Hazards. , 2014, , .		4
233	Believe it or not? The challenge of validating large scale probabilistic risk models. E3S Web of Conferences, 2016, 7, 11004.	0.5	4
234	A multi-track rail model for estimating journey impacts from extreme weather events: a case study of Great Britain's rail network. International Journal of Rail Transportation, 2022, 10, 133-158.	2.7	4

#	Article	IF	Citations
235	A National Scale Infrastructure Database and Modelling Environment for the UK., 0,,.		4
236	The influence of temporal variability and reservoir management on demand-response in the water sector. Applied Energy, 2022, 305, 117808.	10.1	4
237	Sources and Implications of Uncertainty for Coastal Managers. Water and Environment Journal, 2001, 15, 103-108.	2.2	3
238	Broad-Scale Analysis of Morphological and Climate Impacts on Coastal Flood Risk. , 2006, , 1.		3
239	THE TYNDALL COASTAL SIMULATOR AND INTERFACE. , 2009, , .		3
240	Too Big to Fail? The Spatial Vulnerability of the Chinese Infrastructure System to Flooding Risks. , 2014, , .		3
241	Preserving Key Topological and Structural Features in the Synthesis of Multilevel Electricity Networks for Modeling of Resilience and Risk. Journal of Infrastructure Systems, 2018, 24, 04017043.	1.8	3
242	Analysing Flood and Erosion Risks and Coastal Management Strategies on the Norfolk Coast. Advances in Global Change Research, 2015, , 233-254.	1.6	3
243	EFFICIENT BROAD SCALE COASTAL FLOOD RISK ASSESSMENT., 2005,,.		3
244	Quantifying the energy consumption and greenhouse gas emissions of changing wastewater quality standards. Water Science and Technology, 2020, 81, 1283-1295.	2.5	3
245	A GIS Tool for Analysis and Interpretation of Coastal Erosion ModelOutputs (SCAPEGIS). , 2006, , 1.		2
246	Climate models' value. New Scientist, 2008, 201, 16.	0.0	2
247	How safe is safe enough?. Journal of Flood Risk Management, 2011, 4, 271-272.	3.3	2
248	Flood Risk Management Decision Analysis with Finite Historical Records and Highly Variable Climate Effects. , $2014, \ldots$		2
249	Towards a whole-network risk assessment for railway bridge failures caused by scour during flood events. E3S Web of Conferences, 2016, 7, 11002.	0.5	2
250	Surface water flood risk and management strategies for London: An Agent-Based Model approach. E3S Web of Conferences, 2016, 7, 22003.	0.5	2
251	Efficient pathways to zero-carbon energy use by water supply utilities: an example from London, UK. Environmental Research Letters, 0, , .	5.2	2
252	The Influence of Built Form and Area on the Performance of Sustainable Drainage Systems (SuDS). Future Cities and Environment, 2021, 7, .	1.6	2

#	Article	IF	CITATIONS
253	Soft Methods in Earth Systems Engineering. , 2006, , 7-10.		2
254	A MODEL OF SOFT CLIFF AND PLATFORM EROSION., 2003,,.		2
255	Uncertainty Analysis of Coastal Projects. , 1999, , 1461.		1
256	PROBABILISTIC CONDITION CHARACTERISATION OF COASTAL STRUCTURES USING IMPRECISE INFORMATION. , 2003, , .		1
257	Uncertainty Analysis in Environmental Modeling Made Easy. Eos, 2007, 88, 26.	0.1	1
258	PROBABILISTIC SIMULATION OF LONG TERM SHORE MORPHOLOGY OF NORTH NORFOLK UK., 2009, , .		1
259	Briefing: Strategic research on climate impacts. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2010, 163, 7-8.	0.7	1
260	Introducing the Infrastructure Transitions Research Consortium. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2011, 164, 51-51.	0.3	1
261	Preface. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130262.	3.4	1
262	A Risk-Based Framework for Water Planning under Non-Stationary Climate Change. , 2014, , .		1
263	Analysing the risks of failure of interdependent infrastructure networks. , 0, , 241-267.		1
264	Journal of Flood Risk Management. Journal of Flood Risk Management, 2016, 9, 1-2.	3.3	1
265	Database, simulation modelling and visualisation for national infrastructure assessment., 0,, 268-293.		1
266	Looking back and looking forward. Journal of Flood Risk Management, 2017, 10, 3-4.	3.3	1
267	Water for energy in China. , 2017, , 67-87.		1
268	Identifying precipitation uncertainty in crop modelling using Bayesian total error analysis. European Journal of Agronomy, 2018, 101, 248-258.	4.1	1
269	A Simulation Tool to Guide Infrastructure Decisions: System-of-Systems Modeling Aids Prioritization and Uncertainty Planning. IEEE Systems, Man, and Cybernetics Magazine, 2019, 5, 10-20.	1.4	1
270	UK reveals new platform for infrastructure data analysis and simulation modelling. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2019, 172, 102-102.	0.3	1

#	Article	IF	CITATIONS
271	Broadscale Coastal Inundation Modelling. Advances in Global Change Research, 2015, , 213-232.	1.6	1
272	A MULTI-LANDFORM NUMERICAL FRAMEWORK FOR MODELLING LARGE SCALE COASTAL MORPHODYNAMICS. , 2015, , .		1
273	A Probabilistic Process Model of Cliff Recession. , 2001, , 3100.		O
274	RANDOM AND FUZZY SET RELIABILITY ANALYSIS OF COASTAL STRUCTURES., 2003,,.		0
275	1 Overview., 2007,, 3-12.		O
276	Computing Statistical Characteristics When We Know Probabilities with Interval or Fuzzy Uncertainty: Computational Complexity. , 2007, , .		0
277	Role of Stabilized and Drainable Bases in Early-Age Cracking on Concrete Airfield Pavements. Transportation Research Record, 2007, 2004, 150-162.	1.9	O
278	PROJECTED LONG TERM CHANGES IN FLOOD RISK ON THE EAST ANGLIA COAST OF THE UK., 2009, , .		0
279	Retrofit Gas Lift System for Tension-Leg-Platform Wells. SPE Production and Operations, 2010, 25, 125-131.	0.6	0
280	Closure to "A 2D shallow flow model for practical dam-break simulation― Journal of Hydraulic Research/De Recherches Hydrauliques, 2012, 50, 544-545.	1.7	0
281	Uncertainty and Sensitivity Analysis of Current and Future Flood Risk in the Thames Estuary. , 2014, , 357-384.		O
282	A framework for analysing the long-term performance of interdependent infrastructure systems. , 0, , 12-28.		0
283	Quantifying interdependencies: the energy–transport and water–energy nexus. , 0, , 227-240.		0
284	Deluged with doubt. New Scientist, 2016, 229, 26-27.	0.0	0
285	Appreciation for <i>Water Resources Research</i> Reviewers. Water Resources Research, 2018, 54, 7114-7137.	4.2	O
286	Thank You to Our 2019 Reviewers. Water Resources Research, 2020, 56, e2020WR027684.	4.2	0
287	Thank You to Our 2020 Reviewers. Water Resources Research, 2021, 57, e2021WR029938.	4.2	0
288	RISK/PERFORMANCE FOR MULTI-ATTRIBUTE DECISION-MAKING IN COASTAL ENGINEERING. , 2003, , .		0

#	Article	IF	CITATIONS
289	SIMULATION BASED OPTIMISATION OF A BEACH NOURISHMENT CONCESSION., 2003,,.		0
290	Integrated Coastal Assessment: The Way Forward. Advances in Global Change Research, 2015, , 349-378.	1.6	0
291	Simulating the Shore and Cliffs of North Norfolk. Advances in Global Change Research, 2015, , 187-211.	1.6	0
292	Thank You to Our 2021 Reviewers. Water Resources Research, 2022, 58, .	4.2	0