List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacotherapy in Childhood Obesity. Hormone Research in Paediatrics, 2022, 95, 177-192.	1.8	9
2	Young Awardees in Endocrinology Presenting Hot Topics. Experimental and Clinical Endocrinology and Diabetes, 2022, 130, 280-281.	1.2	0
3	Ascorbate-induced oxidative stress mediates TRP channel activation and cytotoxicity in human etoposide-sensitive and -resistant retinoblastoma cells. Laboratory Investigation, 2021, 101, 70-88.	3.7	12
4	A New Mechanism in THRA Resistance: The First Disease-Associated Variant Leading to an Increased Inhibitory Function of THRA2. International Journal of Molecular Sciences, 2021, 22, 5338.	4.1	8
5	Design and Characterization of a Fluorescent Reporter Enabling Live-cell Monitoring of MCT8 Expression. Experimental and Clinical Endocrinology and Diabetes, 2021, , .	1.2	0
6	Melanocortin 4 receptor mutations become common. Cell Metabolism, 2021, 33, 1512-1513.	16.2	1
7	Structures of active melanocortin-4 receptor–Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Research, 2021, 31, 1176-1189.	12.0	40
8	N- and O-Acetylated 3-lodothyronamines Have No Metabolic or Thermogenic Effects in Male Mice. European Thyroid Journal, 2020, 9, 57-66.	2.4	4
9	3-Iodothyronamine Induces Diverse Signaling Effects at Different Aminergic and Non-Aminergic G-Protein Coupled Receptors. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 395-400.	1.2	5
10	Seven Years of Active Thyroid Hormone Research in Germany: Thyroid Hormone Action beyond Classical Concepts. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 355-357.	1.2	1
11	Spatiotemporal Changes of Cerebral Monocarboxylate Transporter 8 Expression. Thyroid, 2020, 30, 1366-1383.	4.5	22
12	Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. International Journal of Molecular Sciences, 2020, 21, 1224.	4.1	24
13	Allan-Herndon-Dudley-Syndrome: Considerations about the Brain Phenotype with Implications for Treatment Strategies. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 414-422.	1.2	9
14	Pharmacological treatment strategies for patients with monogenic obesity. Journal of Pediatric Endocrinology and Metabolism, 2020, 33, 967-973.	0.9	9
15	Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Frontiers in Endocrinology, 2019, 10, 515.	3.5	24
16	Non-Functional Trace Amine-Associated Receptor 1 Variants in Patients With Mental Disorders. Frontiers in Pharmacology, 2019, 10, 1027.	3.5	12
17	3-lodothyronamine—A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocrine Reviews, 2019, 40, 602-630.	20.1	38
18	Evaluation of a rare glucoseâ€dependent insulinotropic polypeptide receptor variant in a patient with diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 1168-1176.	4.4	1

#	Article	IF	CITATIONS
19	A New Multisystem Disorder Caused by the Gαs Mutation p.F376V. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1079-1089.	3.6	14
20	The Pathogenic TSH β-subunit Variant C105Vfs114X Causes a Modified Signaling Profile at TSHR. International Journal of Molecular Sciences, 2019, 20, 5564.	4.1	4
21	Melanocortin-4 Receptor Signalling: Importance for Weight Regulation and Obesity Treatment. Trends in Molecular Medicine, 2019, 25, 136-148.	6.7	127
22	The Thyroid and Its Regulation by the TSHR: Evolution, Development, and Congenital Defects. , 2019, , 219-233.		0
23	Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level. Cellular and Molecular Life Sciences, 2018, 75, 2227-2239.	5.4	14
24	3-lodothyronamine Activates a Set of Membrane Proteins in Murine Hypothalamic Cell Lines. Frontiers in Endocrinology, 2018, 9, 523.	3.5	12
25	Relevance of polymorphisms in MC4R and BDNF in short normal stature. BMC Pediatrics, 2018, 18, 278.	1.7	5
26	The Trace Amine-Associated Receptor 1 Agonist 3-lodothyronamine Induces Biased Signaling at the Serotonin 1b Receptor. Frontiers in Pharmacology, 2018, 9, 222.	3.5	22
27	An incretin-based tri-agonist promotes superior insulin secretion from murine pancreatic islets via PLC activation. Cellular Signalling, 2018, 51, 13-22.	3.6	13
28	MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nature Medicine, 2018, 24, 551-555.	30.7	219
29	Treatment of Diabetes and Obesity by Rationally Designed Peptide Agonists Functioning at Multiple Metabolic Receptors. Endocrine Development, 2017, 32, 165-182.	1.3	12
30	3-lodothyronamine Decreases Expression of Genes Involved in Iodide Metabolism in Mouse Thyroids and Inhibits Iodide Uptake in PCCL3 Thyrocytes. Thyroid, 2017, 27, 11-22.	4.5	26
31	Investigation of Naturally Occurring Single-Nucleotide Variants in Human TAAR1. Frontiers in Pharmacology, 2017, 8, 807.	3.5	15
32	Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Frontiers in Endocrinology, 2017, 8, 86.	3.5	73
33	3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8?. Frontiers in Endocrinology, 2017, 8, 198.	3.5	30
34	Ring Finger Protein 11 Inhibits Melanocortin 3 and 4 Receptor Signaling. Frontiers in Endocrinology, 2016, 7, 109.	3.5	3
35	Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83. PLoS ONE, 2016, 11, e0168260.	2.5	16
36	Minireview: Insights Into the Structural and Molecular Consequences of the TSH-β Mutation C105Vfs114X. Molecular Endocrinology, 2016, 30, 954-964.	3.7	10

#	Article	IF	CITATIONS
37	Decreased melanocortinâ€4 receptor function conferred by an infrequent variant at the human melanocortin receptor accessory protein 2 gene. Obesity, 2016, 24, 1976-1982.	3.0	43
38	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
39	Detection of Novel Gene Variants Associated with Congenital Hypothyroidism in a Finnish Patient Cohort. Thyroid, 2016, 26, 1215-1224.	4.5	63
40	The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity. Molecular and Cellular Endocrinology, 2016, 434, 278-287.	3.2	6
41	Oligomerization of GPCRs involved in endocrine regulation. Journal of Molecular Endocrinology, 2016, 57, R59-R80.	2.5	37
42	Two Novel Mutations in the Serpina7 Gene Are Associated with Complete Deficiency of Thyroxine-Binding Globulin. European Thyroid Journal, 2015, 4, 108-112.	2.4	9
43	The Multitarget Ligand 3-Iodothyronamine Modulates β-Adrenergic Receptor 2 Signaling. European Thyroid Journal, 2015, 4, 21-29.	2.4	31
44	3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. Journal of Molecular Endocrinology, 2015, 54, 205-216.	2.5	54
45	Trace Amine-Associated Receptor 1 Localization at the Apical Plasma Membrane Domain of Fisher Rat Thyroid Epithelial Cells Is Confined to Cilia. European Thyroid Journal, 2015, 4, 30-41.	2.4	28
46	Evolutionary Conservation of 3-lodothyronamine as an Agonist at the Trace Amine-Associated Receptor 1. European Thyroid Journal, 2015, 4, 9-20.	2.4	23
47	Treatment of congenital thyroid dysfunction: Achievements and challenges. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 399-413.	4.7	31
48	Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. Journal of Molecular Endocrinology, 2015, 54, 39-50.	2.5	18
49	Loss-of-Function Variants in a Hungarian Cohort Reveal Structural Insights on TSH Receptor Maturation and Signaling. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1039-E1045.	3.6	16
50	A Novel Hemizygous Mutation of <i>MAMLD1</i> in a Patient with 46,XY Complete Gonadal Dysgenesis. Sexual Development, 2015, 9, 80-85.	2.0	17
51	Understanding the Healthy Thyroid State in 2015. European Thyroid Journal, 2015, 4, 1-8.	2.4	17
52	Inverse Agonistic Action of 3-lodothyronamine at the Human Trace Amine-Associated Receptor 5. PLoS ONE, 2015, 10, e0117774.	2.5	62
53	The extracellular N-terminal domain of G-protein coupled receptor 83 regulates signaling properties and is an intramolecular inverse agonist. BMC Research Notes, 2014, 7, 913.	1.4	9
54	Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. Journal of Medical Genetics, 2014, 51, 375-387.	3.2	77

#	Article	IF	CITATIONS
55	Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile. International Journal of Molecular Sciences, 2014, 15, 20638-20655.	4.1	23
56	Both Acyl and Des-Acyl Ghrelin Regulate Adiposity and Glucose Metabolism via Central Nervous System Ghrelin Receptors. Diabetes, 2014, 63, 122-131.	0.6	100
57	Identification of PENDRIN (SLC26A4) Mutations in Patients With Congenital Hypothyroidism and "Apparent―Thyroid Dysgenesis. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E169-E176.	3.6	44
58	Constitutive Activities in the Thyrotropin Receptor. Advances in Pharmacology, 2014, 70, 81-119.	2.0	25
59	Analysis of the gene coding for steroidogenic factor 1 (SF1, NR5A1) in a cohort of 50 Egyptian patients with 46,XY disorders of sex development. European Journal of Endocrinology, 2014, 170, 759-767.	3.7	32
60	Mitochondrial DNA Variants in Obesity. PLoS ONE, 2014, 9, e94882.	2.5	26
61	TSH induces metallothionein 1 in thyrocytes via Gq/11- and PKC-dependent signaling. Journal of Molecular Endocrinology, 2013, 51, 79-90.	2.5	16
62	Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction. Endocrine Reviews, 2013, 34, 691-724.	20.1	118
63	The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nature Communications, 2013, 4, 1968.	12.8	64
64	Inhibition of melanocortin-4 receptor dimerization by substitutions in intracellular loop 2. Journal of Molecular Endocrinology, 2013, 51, 109-118.	2.5	36
65	G-Protein Coupled Receptor 83 (GPR83) Signaling Determined by Constitutive and Zinc(II)-Induced Activity. PLoS ONE, 2013, 8, e53347.	2.5	26
66	Testosterone production during puberty in two 46,XY patients with disorders of sex development and novel NR5A1 (SF-1) mutations. European Journal of Endocrinology, 2012, 167, 125-130.	3.7	40
67	Frequent TSH Receptor Genetic Alterations with Variable Signaling Impairment in a Large Series of Children with Nonautoimmune Isolated Hyperthyrotropinemia. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E156-E160.	3.6	47
68	New Pathogenic Thyrotropin Receptor Mutations Decipher Differentiated Activity Switching at a Conserved Helix 6 Motif of Family A GPCR. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E228-E232.	3.6	23
69	MC4R Dimerization in the Paraventricular Nucleus and GHSR/MC3R Heterodimerization in the Arcuate Nucleus: Is There Relevance for Body Weight Regulation?. Neuroendocrinology, 2012, 95, 277-288.	2.5	35
70	Do Common Variants Separate between Obese Melanocortin-4 Receptor Gene Mutation Carriers and Non-Carriers? The Impact of Cryptic Relatedness. Hormone Research in Paediatrics, 2012, 77, 358-368.	1.8	3
71	Plasma Bile Acids Are Associated with Energy Expenditure and Thyroid Function in Humans. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 535-542.	3.6	57
72	The Neuroendocrine Circuitry Controlled by POMC, MSH, and AGRP. Handbook of Experimental Pharmacology, 2012, , 47-75.	1.8	56

#	Article	IF	CITATIONS
73	Rescue of Melanocortin 4 Receptor (MC4R) Nonsense Mutations by Aminoglycosideâ€Mediated Readâ€Through. Obesity, 2012, 20, 1074-1081.	3.0	37
74	Mutation screen in the GWAS derived obesity gene SH2B1including functional analyses of detected variants. BMC Medical Genomics, 2012, 5, 65.	1.5	30
75	Identification of the Translation Start Site of the Human Melanocortin 3 Receptor. Obesity Facts, 2012, 5, 45-51.	3.4	6
76	Differential Modulation of Beta-Adrenergic Receptor Signaling by Trace Amine-Associated Receptor 1 Agonists. PLoS ONE, 2011, 6, e27073.	2.5	54
77	Proinsulin and the proinsulin/insulin ratio in overweight and obese children and adolescents: relation to clinical parameters, insulin resistance, and impaired glucose regulation. Pediatric Diabetes, 2011, 12, 242-249.	2.9	14
78	What is hot in experimental thyroidology?. Thyroid Research, 2011, 4, 11.	1.5	0
79	Insights into molecular properties of the human monocarboxylate transporter 8 by combining functional with structural information. Thyroid Research, 2011, 4, S4.	1.5	27
80	Molecular description of non-autoimmune hyperthyroidism at a neonate caused by a new thyrotropin receptor germline mutation. Thyroid Research, 2011, 4, S8.	1.5	10
81	Molecules important for thyroid hormone synthesis and action - known facts and future perspectives. Thyroid Research, 2011, 4, S9.	1.5	48
82	Mutually Opposite Signal Modulation by Hypothalamic Heterodimerization of Ghrelin and Melanocortin-3 Receptors. Journal of Biological Chemistry, 2011, 286, 39623-39631.	3.4	90
83	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	21.4	2,634
84	Genetic defects, thyroid growth and malfunctions of the TSHR in pediatric patients. Frontiers in Bioscience - Landmark, 2010, 15, 913.	3.0	12
85	Association of variants in gastric inhibitory polypeptide receptor gene with impaired glucose homeostasis in obese children and adolescents from Berlin. European Journal of Endocrinology, 2010, 163, 259-264.	3.7	26
86	Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups. PLoS Genetics, 2010, 6, e1000916.	3.5	287
87	A New Phenotype of Nongoitrous and Nonautoimmune Hyperthyroidism Caused by a Heterozygous Thyrotropin Receptor Mutation in Transmembrane Helix 6. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3605-3610.	3.6	27
88	Involvement of the chemokine-like receptor GPR33 in innate immunity. Biochemical and Biophysical Research Communications, 2010, 396, 272-277.	2.1	11
89	Investigation of a Genome Wide Association Signal for Obesity: Synthetic Association and Haplotype Analyses at the Melanocortin 4 Receptor Gene Locus. PLoS ONE, 2010, 5, e13967.	2.5	45
90	Heterodimerization of Hypothalamic G-Protein-Coupled Receptors Involved in Weight Regulation. Obesity Facts, 2009, 2, 3-3.	3.4	58

#	Article	IF	CITATIONS
91	The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency. European Journal of Endocrinology, 2009, 161, 237-242.	3.7	115
92	Meta-Analysis of the INSIG2 Association with Obesity Including 74,345 Individuals: Does Heterogeneity of Estimates Relate to Study Design?. PLoS Genetics, 2009, 5, e1000694.	3.5	62
93	Surface translocation and tri-iodothyronine uptake of mutant MCT8 proteins are cell type-dependent. Journal of Molecular Endocrinology, 2009, 43, 263-271.	2.5	56
94	Increased constraints on MC4R during primate and human evolution. Human Genetics, 2009, 124, 633-647.	3.8	27
95	A novel melanocortin-4 receptor gene mutation in a female patient with severe childhood obesity. Endocrine, 2009, 36, 52-59.	2.3	24
96	Lifestyle Intervention in Obese Children With Variations in the Melanocortin 4 Receptor Gene. Obesity, 2009, 17, 382-389.	3.0	126
97	Five novel mutations in steroidogenic factor 1 (SF1,NR5A1) in 46,XY patients with severe underandrogenization but without adrenal insufficiency. Human Mutation, 2008, 29, 59-64.	2.5	141
98	Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Human Molecular Genetics, 2008, 17, 2150-2159.	2.9	90
99	A Heterozygous Mutation in the Third Transmembrane Domain Causes a Dominant-Negative Effect on Signalling Capability of the MC4R. Obesity Facts, 2008, 1, 155-162.	3.4	32
100	G13-dependent Activation of MAPK by Thyrotropin. Journal of Biological Chemistry, 2008, 283, 20330-20341.	3.4	35
101	V2 vasopressin receptor deficiency causes changes in expression and function of renal and hypothalamic components involved in electrolyte and water homeostasis. American Journal of Physiology - Renal Physiology, 2008, 295, F1177-F1190.	2.7	19
102	Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism: identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. European Journal of Endocrinology, 2007, 156, 521-529.	3.7	94
103	Evolutionary Aspects in Evaluating Mutations in the Melanocortin 4 Receptor. Endocrinology, 2007, 148, 4642-4648.	2.8	61
104	Mutation screen and association studies in the Diacylglycerol O-acyltransferase homolog 2 gene (DGAT2), a positional candidate gene for early onset obesity on chromosome 11q13. BMC Genetics, 2007, 8, 17.	2.7	24
105	A role for β-melanocyte-stimulating hormone in human body-weight regulation. Cell Metabolism, 2006, 3, 141-146.	16.2	171
106	MC4R oligomerizes independently of extracellular cysteine residues. Peptides, 2006, 27, 372-379.	2.4	29
107	N-ethyl-N-nitrosourea-based generation of mouse models for mutant G protein-coupled receptors. Physiological Genomics, 2006, 26, 209-217.	2.3	15
108	Prevalence, Spectrum, and Functional Characterization of Melanocortin-4 Receptor Gene Mutations in a Representative Population-Based Sample and Obese Adults from Germany. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1761-1769.	3.6	181

#	Article	IF	CITATIONS
109	Extended clinical phenotype, endocrine investigations and functional studies of a loss-of-function mutation A150V in the thyroid hormone specific transporter MCT8. European Journal of Endocrinology, 2005, 153, 359-366.	3.7	86
110	Mutation analysis of the MCHR1 gene in human obesity. European Journal of Endocrinology, 2005, 152, 851-862.	3.7	34
111	Molecular genetic defects in congenital hypothyroidism. European Journal of Endocrinology, 2004, 151 Suppl 3, U39-U44.	3.7	50
112	Mutant G-protein-coupled receptors as a cause of human diseases. , 2004, 104, 173-206.		281
113	Melanocortin-4 Receptor Gene Variant 1103 Is Negatively Associated with Obesity. American Journal of Human Genetics, 2004, 74, 572-581.	6.2	202
114	Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet, The, 2004, 364, 1435-1437.	13.7	615
115	Mutations in the Human Proopiomelanocortin Gene. Annals of the New York Academy of Sciences, 2003, 994, 233-239.	3.8	73
116	Mutationally Induced Disulfide Bond Formation within the Third Extracellular Loop Causes Melanocortin 4 Receptor Inactivation in Patients with Obesity. Journal of Biological Chemistry, 2003, 278, 48666-48673.	3.4	67
117	Autosomal-Dominant Mode of Inheritance of a Melanocortin-4 Receptor Mutation in a Patient with Severe Early-Onset Obesity Is Due to a Dominant-Negative Effect Caused by Receptor Dimerization. Diabetes, 2003, 52, 2984-2988.	0.6	150
118	Neonatal Thyroid Disorders. Hormone Research in Paediatrics, 2003, 59, 24-29.	1.8	44
119	Obesity Due to Proopiomelanocortin Deficiency: Three New Cases and Treatment Trials with Thyroid Hormone and ACTH4–10. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4633-4640.	3.6	281
120	Congenital Central Hypothyroidism due to Homozygous Thyrotropin β 313ΔT Mutation Is Caused by a Founder Effect. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 4811-4816.	3.6	45
121	Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. Journal of Clinical Investigation, 2002, 109, 475-480.	8.2	239
122	Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. Journal of Clinical Investigation, 2002, 109, 475-480.	8.2	157
123	The First Activating TSH Receptor Mutation in Transmembrane Domain 1 Identified in a Family with Nonautoimmune Hyperthyroidism. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4429-4433.	3.6	53
124	The First Activating TSH Receptor Mutation in Transmembrane Domain 1 Identified in a Family with Nonautoimmune Hyperthyroidism. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4429-4433.	3.6	17
125	Constitutively activating TSH-receptor mutations as a molecular cause of non-autoimmune hyperthyroidism in childhood. Langenbeck's Archives of Surgery, 2000, 385, 390-392.	1.9	26
126	Molecular Pathogenesis of Neonatal Hypothyroidism. Hormone Research in Paediatrics, 2000, 53, 12-18.	1.8	18

#	Article	IF	CITATIONS
127	Severe Congenital Hypothyroidism Due to a Homozygous Mutation of the βTSH Gene. Pediatric Research, 1999, 46, 170-173.	2.3	48
128	Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genetics, 1998, 19, 155-157.	21.4	1,573
129	V2 vasopressin receptor dysfunction in nephrogenic diabetes insipidus caused by different molecular mechanisms. Human Mutation, 1998, 12, 196-205.	2.5	78
130	Severe Congenital Hyperthyroidism Caused by a Germ-LineneoMutation in the Extracellular Portion of the Thyrotropin Receptor1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1431-1436.	3.6	92
131	A conserved tyrosine residue (Y601) in transmembrane domain 5 of the human thyrotropin receptor serves as a molecular switch to determine Gâ€protein coupling. FASEB Journal, 1998, 12, 1461-1471.	0.5	81
132	Mutations of the Human Thyrotropin Receptor Gene Causing Thyroid Hypoplasia and Persistent Congenital Hypothyroidism1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3471-3480.	3.6	146