Heike Biebermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3365100/publications.pdf

Version: 2024-02-01

132 papers 11,479 citations

50276 46 h-index 30087 103 g-index

134 all docs

134 docs citations

134 times ranked

14583 citing authors

#	Article	IF	CITATIONS
1	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	21.4	2,634
2	Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genetics, 1998, 19, 155-157.	21.4	1,573
3	Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet, The, 2004, 364, 1435-1437.	13.7	615
4	Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups. PLoS Genetics, 2010, 6, e1000916.	3 . 5	287
5	Obesity Due to Proopiomelanocortin Deficiency: Three New Cases and Treatment Trials with Thyroid Hormone and ACTH4–10. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4633-4640.	3.6	281
6	Mutant G-protein-coupled receptors as a cause of human diseases. , 2004, 104, 173-206.		281
7	Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. Journal of Clinical Investigation, 2002, 109, 475-480.	8.2	239
8	MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nature Medicine, 2018, 24, 551-555.	30.7	219
9	Melanocortin-4 Receptor Gene Variant I103 Is Negatively Associated with Obesity. American Journal of Human Genetics, 2004, 74, 572-581.	6.2	202
10	Prevalence, Spectrum, and Functional Characterization of Melanocortin-4 Receptor Gene Mutations in a Representative Population-Based Sample and Obese Adults from Germany. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1761-1769.	3.6	181
11	A role for \hat{l}^2 -melanocyte-stimulating hormone in human body-weight regulation. Cell Metabolism, 2006, 3, 141-146.	16.2	171
12	Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. Journal of Clinical Investigation, 2002, 109, 475-480.	8.2	157
13	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
14	Autosomal-Dominant Mode of Inheritance of a Melanocortin-4 Receptor Mutation in a Patient with Severe Early-Onset Obesity Is Due to a Dominant-Negative Effect Caused by Receptor Dimerization. Diabetes, 2003, 52, 2984-2988.	0.6	150
15	Mutations of the Human Thyrotropin Receptor Gene Causing Thyroid Hypoplasia and Persistent Congenital Hypothyroidism1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3471-3480.	3. 6	146
16	Five novel mutations in steroidogenic factor 1 (SF1,NR5A1) in 46,XY patients with severe underandrogenization but without adrenal insufficiency. Human Mutation, 2008, 29, 59-64.	2.5	141
17	Melanocortin-4 Receptor Signalling: Importance for Weight Regulation and Obesity Treatment. Trends in Molecular Medicine, 2019, 25, 136-148.	6.7	127
18	Lifestyle Intervention in Obese Children With Variations in the Melanocortin 4 Receptor Gene. Obesity, 2009, 17, 382-389.	3.0	126

#	Article	IF	CITATIONS
19	Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction. Endocrine Reviews, 2013, 34, 691-724.	20.1	118
20	The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency. European Journal of Endocrinology, 2009, 161, 237-242.	3.7	115
21	Both Acyl and Des-Acyl Ghrelin Regulate Adiposity and Glucose Metabolism via Central Nervous System Ghrelin Receptors. Diabetes, 2014, 63, 122-131.	0.6	100
22	Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism: identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. European Journal of Endocrinology, 2007, 156, 521-529.	3.7	94
23	Severe Congenital Hyperthyroidism Caused by a Germ-LineneoMutation in the Extracellular Portion of the Thyrotropin Receptor 1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1431-1436.	3.6	92
24	Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Human Molecular Genetics, 2008, 17, 2150-2159.	2.9	90
25	Mutually Opposite Signal Modulation by Hypothalamic Heterodimerization of Ghrelin and Melanocortin-3 Receptors. Journal of Biological Chemistry, 2011, 286, 39623-39631.	3.4	90
26	Extended clinical phenotype, endocrine investigations and functional studies of a loss-of-function mutation A150V in the thyroid hormone specific transporter MCT8. European Journal of Endocrinology, 2005, 153, 359-366.	3.7	86
27	A conserved tyrosine residue (Y601) in transmembrane domain 5 of the human thyrotropin receptor serves as a molecular switch to determine Gâ€protein coupling. FASEB Journal, 1998, 12, 1461-1471.	0.5	81
28	V2 vasopressin receptor dysfunction in nephrogenic diabetes insipidus caused by different molecular mechanisms. Human Mutation, 1998, 12, 196-205.	2.5	78
29	Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. Journal of Medical Genetics, 2014, 51, 375-387.	3.2	77
30	Mutations in the Human Proopiomelanocortin Gene. Annals of the New York Academy of Sciences, 2003, 994, 233-239.	3.8	73
31	Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Frontiers in Endocrinology, 2017, 8, 86.	3.5	73
32	Mutationally Induced Disulfide Bond Formation within the Third Extracellular Loop Causes Melanocortin 4 Receptor Inactivation in Patients with Obesity. Journal of Biological Chemistry, 2003, 278, 48666-48673.	3.4	67
33	The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nature Communications, 2013, 4, 1968.	12.8	64
34	Detection of Novel Gene Variants Associated with Congenital Hypothyroidism in a Finnish Patient Cohort. Thyroid, 2016, 26, 1215-1224.	4.5	63
35	Meta-Analysis of the INSIG2 Association with Obesity Including 74,345 Individuals: Does Heterogeneity of Estimates Relate to Study Design?. PLoS Genetics, 2009, 5, e1000694.	3.5	62
36	Inverse Agonistic Action of 3-lodothyronamine at the Human Trace Amine-Associated Receptor 5. PLoS ONE, 2015, 10, e0117774.	2.5	62

#	Article	IF	CITATIONS
37	Evolutionary Aspects in Evaluating Mutations in the Melanocortin 4 Receptor. Endocrinology, 2007, 148, 4642-4648.	2.8	61
38	Heterodimerization of Hypothalamic G-Protein-Coupled Receptors Involved in Weight Regulation. Obesity Facts, 2009, 2, 3-3.	3.4	58
39	Plasma Bile Acids Are Associated with Energy Expenditure and Thyroid Function in Humans. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 535-542.	3.6	57
40	Surface translocation and tri-iodothyronine uptake of mutant MCT8 proteins are cell type-dependent. Journal of Molecular Endocrinology, 2009, 43, 263-271.	2.5	56
41	The Neuroendocrine Circuitry Controlled by POMC, MSH, and AGRP. Handbook of Experimental Pharmacology, 2012, , 47-75.	1.8	56
42	Differential Modulation of Beta-Adrenergic Receptor Signaling by Trace Amine-Associated Receptor 1 Agonists. PLoS ONE, 2011, 6, e27073.	2.5	54
43	3-iodothyronamine differentially modulates î±-2A-adrenergic receptor-mediated signaling. Journal of Molecular Endocrinology, 2015, 54, 205-216.	2.5	54
44	The First Activating TSH Receptor Mutation in Transmembrane Domain 1 Identified in a Family with Nonautoimmune Hyperthyroidism. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4429-4433.	3.6	53
45	Molecular genetic defects in congenital hypothyroidism. European Journal of Endocrinology, 2004, 151 Suppl 3, U39-U44.	3.7	50
46	Molecules important for thyroid hormone synthesis and action - known facts and future perspectives. Thyroid Research, 2011, 4, S9.	1.5	48
47	Severe Congenital Hypothyroidism Due to a Homozygous Mutation of the \hat{l}^2 TSH Gene. Pediatric Research, 1999, 46, 170-173.	2.3	48
48	Frequent TSH Receptor Genetic Alterations with Variable Signaling Impairment in a Large Series of Children with Nonautoimmune Isolated Hyperthyrotropinemia. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E156-E160.	3.6	47
49	Congenital Central Hypothyroidism due to Homozygous Thyrotropin β 313ΔT Mutation Is Caused by a Founder Effect. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 4811-4816.	3.6	45
50	Investigation of a Genome Wide Association Signal for Obesity: Synthetic Association and Haplotype Analyses at the Melanocortin 4 Receptor Gene Locus. PLoS ONE, 2010, 5, e13967.	2.5	45
51	Neonatal Thyroid Disorders. Hormone Research in Paediatrics, 2003, 59, 24-29.	1.8	44
52	Identification of PENDRIN (SLC26A4) Mutations in Patients With Congenital Hypothyroidism and "Apparent―Thyroid Dysgenesis. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E169-E176.	3.6	44
53	Decreased melanocortinâ€4 receptor function conferred by an infrequent variant at the human melanocortin receptor accessory protein 2 gene. Obesity, 2016, 24, 1976-1982.	3.0	43
54	Testosterone production during puberty in two 46,XY patients with disorders of sex development and novel NR5A1 (SF-1) mutations. European Journal of Endocrinology, 2012, 167, 125-130.	3.7	40

#	Article	IF	CITATIONS
55	Structures of active melanocortin-4 receptor–Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Research, 2021, 31, 1176-1189.	12.0	40
56	3-lodothyronamineâ€"A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocrine Reviews, 2019, 40, 602-630.	20.1	38
57	Rescue of Melanocortin 4 Receptor (MC4R) Nonsense Mutations by Aminoglycosideâ€Mediated Readâ€Through. Obesity, 2012, 20, 1074-1081.	3.0	37
58	Oligomerization of GPCRs involved in endocrine regulation. Journal of Molecular Endocrinology, 2016, 57, R59-R80.	2.5	37
59	Inhibition of melanocortin-4 receptor dimerization by substitutions in intracellular loop 2. Journal of Molecular Endocrinology, 2013, 51, 109-118.	2.5	36
60	G13-dependent Activation of MAPK by Thyrotropin. Journal of Biological Chemistry, 2008, 283, 20330-20341.	3.4	35
61	MC4R Dimerization in the Paraventricular Nucleus and GHSR/MC3R Heterodimerization in the Arcuate Nucleus: Is There Relevance for Body Weight Regulation?. Neuroendocrinology, 2012, 95, 277-288.	2.5	35
62	Mutation analysis of the MCHR1 gene in human obesity. European Journal of Endocrinology, 2005, 152, 851-862.	3.7	34
63	A Heterozygous Mutation in the Third Transmembrane Domain Causes a Dominant-Negative Effect on Signalling Capability of the MC4R. Obesity Facts, 2008, 1, 155-162.	3.4	32
64	Analysis of the gene coding for steroidogenic factor 1 (SF1, NR5A1) in a cohort of 50 Egyptian patients with 46,XY disorders of sex development. European Journal of Endocrinology, 2014, 170, 759-767.	3.7	32
65	The Multitarget Ligand 3-lodothyronamine Modulates \hat{l}^2 -Adrenergic Receptor 2 Signaling. European Thyroid Journal, 2015, 4, 21-29.	2.4	31
66	Treatment of congenital thyroid dysfunction: Achievements and challenges. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 399-413.	4.7	31
67	Mutation screen in the GWAS derived obesity gene SH2B1including functional analyses of detected variants. BMC Medical Genomics, 2012, 5, 65.	1.5	30
68	3-lodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8?. Frontiers in Endocrinology, 2017, 8, 198.	3.5	30
69	MC4R oligomerizes independently of extracellular cysteine residues. Peptides, 2006, 27, 372-379.	2.4	29
70	Trace Amine-Associated Receptor 1 Localization at the Apical Plasma Membrane Domain of Fisher Rat Thyroid Epithelial Cells Is Confined to Cilia. European Thyroid Journal, 2015, 4, 30-41.	2.4	28
71	Increased constraints on MC4R during primate and human evolution. Human Genetics, 2009, 124, 633-647.	3.8	27
72	A New Phenotype of Nongoitrous and Nonautoimmune Hyperthyroidism Caused by a Heterozygous Thyrotropin Receptor Mutation in Transmembrane Helix 6. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3605-3610.	3.6	27

#	Article	IF	Citations
73	Insights into molecular properties of the human monocarboxylate transporter 8 by combining functional with structural information. Thyroid Research, 2011, 4, S4.	1.5	27
74	Constitutively activating TSH-receptor mutations as a molecular cause of non-autoimmune hyperthyroidism in childhood. Langenbeck's Archives of Surgery, 2000, 385, 390-392.	1.9	26
75	Association of variants in gastric inhibitory polypeptide receptor gene with impaired glucose homeostasis in obese children and adolescents from Berlin. European Journal of Endocrinology, 2010, 163, 259-264.	3.7	26
76	G-Protein Coupled Receptor 83 (GPR83) Signaling Determined by Constitutive and Zinc(II)-Induced Activity. PLoS ONE, 2013, 8, e53347.	2.5	26
77	3-lodothyronamine Decreases Expression of Genes Involved in Iodide Metabolism in Mouse Thyroids and Inhibits Iodide Uptake in PCCL3 Thyrocytes. Thyroid, 2017, 27, 11-22.	4.5	26
78	Mitochondrial DNA Variants in Obesity. PLoS ONE, 2014, 9, e94882.	2.5	26
79	Constitutive Activities in the Thyrotropin Receptor. Advances in Pharmacology, 2014, 70, 81-119.	2.0	25
80	Mutation screen and association studies in the Diacylglycerol O-acyltransferase homolog 2 gene (DGAT2), a positional candidate gene for early onset obesity on chromosome 11q13. BMC Genetics, 2007, 8, 17.	2.7	24
81	A novel melanocortin-4 receptor gene mutation in a female patient with severe childhood obesity. Endocrine, 2009, 36, 52-59.	2.3	24
82	Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Frontiers in Endocrinology, 2019, 10, 515.	3 . 5	24
83	Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. International Journal of Molecular Sciences, 2020, 21, 1224.	4.1	24
84	New Pathogenic Thyrotropin Receptor Mutations Decipher Differentiated Activity Switching at a Conserved Helix 6 Motif of Family A GPCR. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E228-E232.	3.6	23
85	Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile. International Journal of Molecular Sciences, 2014, 15, 20638-20655.	4.1	23
86	Evolutionary Conservation of 3-lodothyronamine as an Agonist at the Trace Amine-Associated Receptor 1. European Thyroid Journal, 2015, 4, 9-20.	2.4	23
87	The Trace Amine-Associated Receptor 1 Agonist 3-lodothyronamine Induces Biased Signaling at the Serotonin 1b Receptor. Frontiers in Pharmacology, 2018, 9, 222.	3 . 5	22
88	Spatiotemporal Changes of Cerebral Monocarboxylate Transporter 8 Expression. Thyroid, 2020, 30, 1366-1383.	4. 5	22
89	V2 vasopressin receptor deficiency causes changes in expression and function of renal and hypothalamic components involved in electrolyte and water homeostasis. American Journal of Physiology - Renal Physiology, 2008, 295, F1177-F1190.	2.7	19
90	Molecular Pathogenesis of Neonatal Hypothyroidism. Hormone Research in Paediatrics, 2000, 53, 12-18.	1.8	18

#	Article	IF	Citations
91	Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. Journal of Molecular Endocrinology, 2015, 54, 39-50.	2.5	18
92	A Novel Hemizygous Mutation of <i>MAMLD1</i> in a Patient with 46,XY Complete Gonadal Dysgenesis. Sexual Development, 2015, 9, 80-85.	2.0	17
93	Understanding the Healthy Thyroid State in 2015. European Thyroid Journal, 2015, 4, 1-8.	2.4	17
94	The First Activating TSH Receptor Mutation in Transmembrane Domain 1 Identified in a Family with Nonautoimmune Hyperthyroidism. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4429-4433.	3.6	17
95	TSH induces metallothionein 1 in thyrocytes via $\mathrm{Gq/11}$ - and PKC-dependent signaling. Journal of Molecular Endocrinology, 2013, 51, 79-90.	2.5	16
96	Loss-of-Function Variants in a Hungarian Cohort Reveal Structural Insights on TSH Receptor Maturation and Signaling. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1039-E1045.	3.6	16
97	Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83. PLoS ONE, 2016, 11, e0168260.	2.5	16
98	N-ethyl-N-nitrosourea-based generation of mouse models for mutant G protein-coupled receptors. Physiological Genomics, 2006, 26, 209-217.	2.3	15
99	Investigation of Naturally Occurring Single-Nucleotide Variants in Human TAAR1. Frontiers in Pharmacology, 2017, 8, 807.	3.5	15
100	Proinsulin and the proinsulin/insulin ratio in overweight and obese children and adolescents: relation to clinical parameters, insulin resistance, and impaired glucose regulation. Pediatric Diabetes, 2011, 12, 242-249.	2.9	14
101	Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level. Cellular and Molecular Life Sciences, 2018, 75, 2227-2239.	5.4	14
102	A New Multisystem Disorder Caused by the $\widehat{Gl}\pm s$ Mutation p.F376V. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1079-1089.	3.6	14
103	An incretin-based tri-agonist promotes superior insulin secretion from murine pancreatic islets via PLC activation. Cellular Signalling, 2018, 51, 13-22.	3.6	13
104	Genetic defects, thyroid growth and malfunctions of the TSHR in pediatric patients. Frontiers in Bioscience - Landmark, 2010, 15, 913.	3.0	12
105	Treatment of Diabetes and Obesity by Rationally Designed Peptide Agonists Functioning at Multiple Metabolic Receptors. Endocrine Development, 2017, 32, 165-182.	1.3	12
106	3-lodothyronamine Activates a Set of Membrane Proteins in Murine Hypothalamic Cell Lines. Frontiers in Endocrinology, 2018, 9, 523.	3.5	12
107	Non-Functional Trace Amine-Associated Receptor 1 Variants in Patients With Mental Disorders. Frontiers in Pharmacology, 2019, 10, 1027.	3.5	12
108	Ascorbate-induced oxidative stress mediates TRP channel activation and cytotoxicity in human etoposide-sensitive and -resistant retinoblastoma cells. Laboratory Investigation, 2021, 101, 70-88.	3.7	12

#	Article	IF	CITATIONS
109	Involvement of the chemokine-like receptor GPR33 in innate immunity. Biochemical and Biophysical Research Communications, 2010, 396, 272-277.	2.1	11
110	Molecular description of non-autoimmune hyperthyroidism at a neonate caused by a new thyrotropin receptor germline mutation. Thyroid Research, 2011, 4, S8.	1.5	10
111	Minireview: Insights Into the Structural and Molecular Consequences of the TSH-β Mutation C105Vfs114X. Molecular Endocrinology, 2016, 30, 954-964.	3.7	10
112	The extracellular N-terminal domain of G-protein coupled receptor 83 regulates signaling properties and is an intramolecular inverse agonist. BMC Research Notes, 2014, 7, 913.	1.4	9
113	Two Novel Mutations in the Serpina7 Gene Are Associated with Complete Deficiency of Thyroxine-Binding Globulin. European Thyroid Journal, 2015, 4, 108-112.	2.4	9
114	Allan-Herndon-Dudley-Syndrome: Considerations about the Brain Phenotype with Implications for Treatment Strategies. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 414-422.	1.2	9
115	Pharmacotherapy in Childhood Obesity. Hormone Research in Paediatrics, 2022, 95, 177-192.	1.8	9
116	Pharmacological treatment strategies for patients with monogenic obesity. Journal of Pediatric Endocrinology and Metabolism, 2020, 33, 967-973.	0.9	9
117	A New Mechanism in THRA Resistance: The First Disease-Associated Variant Leading to an Increased Inhibitory Function of THRA2. International Journal of Molecular Sciences, 2021, 22, 5338.	4.1	8
118	Identification of the Translation Start Site of the Human Melanocortin 3 Receptor. Obesity Facts, 2012, 5, 45-51.	3.4	6
119	The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity. Molecular and Cellular Endocrinology, 2016, 434, 278-287.	3.2	6
120	Relevance of polymorphisms in MC4R and BDNF in short normal stature. BMC Pediatrics, 2018, 18, 278.	1.7	5
121	3-lodothyronamine Induces Diverse Signaling Effects at Different Aminergic and Non-Aminergic G-Protein Coupled Receptors. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 395-400.	1.2	5
122	The Pathogenic TSH \hat{I}^2 -subunit Variant C105Vfs114X Causes a Modified Signaling Profile at TSHR. International Journal of Molecular Sciences, 2019, 20, 5564.	4.1	4
123	N- and O-Acetylated 3-Iodothyronamines Have No Metabolic or Thermogenic Effects in Male Mice. European Thyroid Journal, 2020, 9, 57-66.	2.4	4
124	Do Common Variants Separate between Obese Melanocortin-4 Receptor Gene Mutation Carriers and Non-Carriers? The Impact of Cryptic Relatedness. Hormone Research in Paediatrics, 2012, 77, 358-368.	1.8	3
125	Ring Finger Protein 11 Inhibits Melanocortin 3 and 4 Receptor Signaling. Frontiers in Endocrinology, $2016, 7, 109.$	3.5	3
126	Evaluation of a rare glucoseâ€dependent insulinotropic polypeptide receptor variant in a patient with diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 1168-1176.	4.4	1

#	Article	IF	CITATIONS
127	Seven Years of Active Thyroid Hormone Research in Germany: Thyroid Hormone Action beyond Classical Concepts. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 355-357.	1.2	1
128	Melanocortin 4 receptor mutations become common. Cell Metabolism, 2021, 33, 1512-1513.	16.2	1
129	What is hot in experimental thyroidology?. Thyroid Research, 2011, 4, I1.	1.5	0
130	Design and Characterization of a Fluorescent Reporter Enabling Live-cell Monitoring of MCT8 Expression. Experimental and Clinical Endocrinology and Diabetes, 2021, , .	1,2	0
131	The Thyroid and Its Regulation by the TSHR: Evolution, Development, and Congenital Defects. , 2019, , 219-233.		0
132	Young Awardees in Endocrinology Presenting Hot Topics. Experimental and Clinical Endocrinology and Diabetes, 2022, 130, 280-281.	1.2	O